PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1687.
Published online 2010 November 27. doi:  10.1107/S1600536810049081
PMCID: PMC3011655

Tetra­kis[1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one-κN 4]bis­(thio­cyanato-κN)nickel(II)

Abstract

In the centrosymmetric mononuclear title complex, [Ni(NCS)2(C11H11N3O)4], the NiII atom, located on an inversion centre, is hexa­coordinated in a distorted octa­hedral geometry comprising four N atoms of four monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands and two N atoms from thio­cyanate anions.

Related literature

Pseudohalide anions N3 , NCS and NCO are versatile ligands in coordination chemistry because of their multiple bridging modes, see: Yue et al. (2008 [triangle]). For a related structure, see: Guo & Cai (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1687-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C11H11N3O)4]
  • M r = 979.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1687-efi1.jpg
  • a = 7.8067 (10) Å
  • b = 11.8539 (15) Å
  • c = 13.8179 (17) Å
  • α = 68.907 (2)°
  • β = 74.765 (2)°
  • γ = 81.687 (2)°
  • V = 1149.3 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 293 K
  • 0.32 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.838, T max = 0.884
  • 6289 measured reflections
  • 4016 independent reflections
  • 3540 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.080
  • S = 1.06
  • 4016 reflections
  • 304 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049081/pk2286sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049081/pk2286Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author gratefully acknowledges financial support from the Youthful Foundation of Tianjin Normal University (Natural Science, grant No. 52 L J44)

supplementary crystallographic information

Comment

Pseudohalide anions N3-, NCS- and NCO- are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue et al., 2008). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo et al., 2007). To further explore this series, we synthesized the title compound, a new NiII complex based on the mixed ligands thiocyanato and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L), which consists of a propanone unit substituted with an triazole and a phenyl group. The crystal structure of the compound consists of a neutral mononuclear [Ni(L)4(SCN)2] molecule. As shown in Fig. 1, the NiII centre is coordinated by four N atoms from four L ligands, with Ni—N bond lengths in the range 2.103 (1)–2.135 (1) Å, two additional N donor from SCN anion, with a Ni—N bond distance of 2.078 (2) Å. Thus, the coordination polyhedron around the NiII cation could be best described as a distorted octahedral geometry. Analysis of the crystal packing indicates that there were no hydrogen bond or πi-πi stacking interactions in the crystal structure. (see Fig. 2).

Experimental

Ni(NO3)2.6H2O (29.1 mg, 0.1 mmol), 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (22.3 mg, 0.1 mmol) and NH4SCN (7.6 mg, 0.1 mmol) were mixed in a CH3CN—H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Green block crystals suitable for X-ray analysis were obtained in 60% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for NiC46H44N14O4S2: C 56.39, H 4.53, N 20.01; found: C 56.44, H 4.64, N 20.05.

Refinement

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms.

Figures

Fig. 1.
The title complex with atom labeling, shown with 30% probability displacement ellipsoids.
Fig. 2.
Crystal packing view of compound.

Crystal data

[Ni(NCS)2(C11H11N3O)4]Z = 1
Mr = 979.78F(000) = 510
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8067 (10) ÅCell parameters from 3376 reflections
b = 11.8539 (15) Åθ = 2.7–27.7°
c = 13.8179 (17) ŵ = 0.57 mm1
α = 68.907 (2)°T = 293 K
β = 74.765 (2)°Block, green
γ = 81.687 (2)°0.32 × 0.28 × 0.22 mm
V = 1149.3 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4016 independent reflections
Radiation source: fine-focus sealed tube3540 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→8
Tmin = 0.838, Tmax = 0.884k = −14→12
6289 measured reflectionsl = −16→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.040P)2 + 0.2997P] where P = (Fo2 + 2Fc2)/3
4016 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.00001.00000.03496 (10)
S10.33805 (8)0.17536 (5)1.13687 (5)0.06495 (17)
O1−0.2740 (2)0.43272 (14)0.66743 (14)0.0764 (5)
O20.7081 (2)0.11988 (13)0.41955 (11)0.0655 (4)
N1−0.13110 (18)0.17612 (12)0.96907 (11)0.0392 (3)
N2−0.3141 (2)0.33084 (13)0.91887 (12)0.0452 (4)
N3−0.2531 (2)0.35006 (14)0.99458 (13)0.0532 (4)
N40.22222 (18)0.06368 (13)0.87523 (10)0.0396 (3)
N50.42461 (19)0.09149 (13)0.72860 (11)0.0413 (3)
N60.4816 (2)0.14708 (15)0.78321 (12)0.0524 (4)
N70.1164 (2)0.03338 (14)1.10545 (12)0.0463 (4)
C1−0.1443 (3)0.25495 (17)1.02134 (14)0.0482 (4)
H1−0.08050.24261.07280.058*
C2−0.2417 (2)0.22777 (16)0.90504 (14)0.0433 (4)
H2−0.26500.19630.85740.052*
C3−0.4513 (3)0.41348 (18)0.87177 (18)0.0575 (5)
H3A−0.54520.42870.92820.069*
H3B−0.50270.37490.83570.069*
C4−0.3814 (3)0.53338 (17)0.79313 (15)0.0517 (5)
H4A−0.48030.59320.78500.062*
H4B−0.30060.56030.82190.062*
C5−0.2859 (3)0.52697 (17)0.68498 (17)0.0512 (5)
C6−0.2094 (3)0.63838 (17)0.59972 (15)0.0478 (4)
C7−0.2128 (3)0.74666 (18)0.61733 (17)0.0589 (5)
H7−0.26640.75210.68420.071*
C8−0.1372 (3)0.8465 (2)0.53641 (19)0.0696 (6)
H8−0.14010.91860.54930.084*
C9−0.0584 (3)0.8405 (2)0.43801 (19)0.0694 (6)
H9−0.00700.90810.38400.083*
C10−0.0551 (3)0.7347 (2)0.41887 (19)0.0725 (7)
H10−0.00230.73060.35140.087*
C11−0.1297 (3)0.6340 (2)0.49890 (17)0.0618 (6)
H11−0.12630.56240.48510.074*
C120.3558 (3)0.12746 (18)0.87042 (14)0.0501 (5)
H120.35840.15530.92490.060*
C130.2719 (2)0.04232 (16)0.78431 (13)0.0430 (4)
H130.2086−0.00120.76250.052*
C140.5325 (3)0.08618 (17)0.62641 (14)0.0493 (5)
H14A0.46850.04740.59670.059*
H14B0.64210.03820.63690.059*
C150.5753 (2)0.21197 (16)0.54981 (13)0.0448 (4)
H15A0.46520.26060.54270.054*
H15B0.64320.24900.57890.054*
C160.6796 (2)0.21220 (17)0.44120 (14)0.0433 (4)
C170.7446 (2)0.32998 (16)0.36077 (13)0.0409 (4)
C180.6985 (3)0.43852 (18)0.37917 (15)0.0540 (5)
H180.62740.43960.44450.065*
C190.7573 (3)0.54573 (19)0.30103 (17)0.0640 (6)
H190.72370.61880.31340.077*
C200.8645 (3)0.5447 (2)0.20578 (16)0.0605 (6)
H200.90410.61700.15350.073*
C210.9141 (3)0.4374 (2)0.18690 (16)0.0633 (6)
H210.98810.43680.12220.076*
C220.8541 (3)0.33028 (19)0.26387 (15)0.0549 (5)
H220.88730.25770.25060.066*
C230.2074 (2)0.09092 (16)1.12141 (13)0.0401 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03343 (17)0.03979 (18)0.02712 (16)−0.01089 (12)−0.00462 (12)−0.00422 (12)
S10.0753 (4)0.0712 (4)0.0618 (3)−0.0221 (3)−0.0177 (3)−0.0299 (3)
O10.0911 (12)0.0527 (9)0.0871 (11)−0.0029 (8)−0.0070 (9)−0.0353 (8)
O20.0860 (11)0.0510 (8)0.0485 (8)−0.0119 (7)0.0079 (7)−0.0171 (7)
N10.0398 (8)0.0403 (8)0.0326 (7)−0.0093 (6)−0.0067 (6)−0.0048 (6)
N20.0433 (8)0.0441 (8)0.0441 (8)−0.0059 (7)−0.0123 (7)−0.0070 (7)
N30.0634 (10)0.0478 (9)0.0490 (9)−0.0007 (8)−0.0173 (8)−0.0148 (7)
N40.0383 (8)0.0434 (8)0.0313 (7)−0.0106 (6)−0.0035 (6)−0.0059 (6)
N50.0421 (8)0.0440 (8)0.0316 (7)−0.0120 (6)−0.0004 (6)−0.0074 (6)
N60.0522 (9)0.0625 (10)0.0407 (8)−0.0271 (8)0.0016 (7)−0.0149 (7)
N70.0434 (8)0.0555 (9)0.0386 (8)−0.0095 (7)−0.0108 (7)−0.0106 (7)
C10.0595 (12)0.0468 (10)0.0389 (10)−0.0058 (9)−0.0163 (9)−0.0103 (8)
C20.0427 (10)0.0456 (10)0.0390 (9)−0.0107 (8)−0.0085 (8)−0.0089 (8)
C30.0442 (11)0.0561 (12)0.0645 (13)0.0005 (9)−0.0162 (10)−0.0099 (10)
C40.0539 (11)0.0465 (10)0.0526 (11)0.0065 (9)−0.0187 (9)−0.0131 (9)
C50.0485 (11)0.0462 (11)0.0617 (12)0.0077 (8)−0.0199 (9)−0.0204 (9)
C60.0481 (11)0.0468 (10)0.0494 (11)0.0110 (8)−0.0187 (9)−0.0169 (8)
C70.0749 (14)0.0495 (11)0.0498 (11)0.0059 (10)−0.0145 (10)−0.0172 (9)
C80.0873 (17)0.0482 (12)0.0687 (15)0.0031 (11)−0.0207 (13)−0.0149 (11)
C90.0619 (14)0.0622 (14)0.0656 (15)0.0035 (11)−0.0142 (11)−0.0027 (11)
C100.0664 (15)0.0860 (18)0.0514 (13)0.0121 (13)−0.0045 (11)−0.0196 (12)
C110.0651 (13)0.0624 (13)0.0596 (13)0.0122 (11)−0.0150 (11)−0.0282 (11)
C120.0558 (11)0.0570 (11)0.0366 (9)−0.0258 (9)0.0021 (8)−0.0152 (8)
C130.0409 (10)0.0501 (10)0.0346 (9)−0.0159 (8)−0.0054 (7)−0.0075 (8)
C140.0524 (11)0.0510 (11)0.0353 (9)−0.0089 (9)0.0050 (8)−0.0120 (8)
C150.0436 (10)0.0480 (10)0.0337 (9)−0.0043 (8)−0.0008 (7)−0.0080 (8)
C160.0409 (10)0.0480 (10)0.0361 (9)−0.0038 (8)−0.0054 (7)−0.0106 (8)
C170.0383 (9)0.0477 (10)0.0323 (9)−0.0046 (8)−0.0070 (7)−0.0082 (7)
C180.0627 (12)0.0512 (11)0.0382 (10)−0.0030 (9)−0.0022 (9)−0.0098 (8)
C190.0799 (16)0.0478 (11)0.0563 (13)−0.0061 (11)−0.0133 (11)−0.0088 (10)
C200.0604 (13)0.0596 (13)0.0482 (12)−0.0217 (10)−0.0102 (10)0.0027 (10)
C210.0624 (13)0.0771 (15)0.0361 (10)−0.0192 (11)0.0063 (9)−0.0088 (10)
C220.0611 (12)0.0584 (12)0.0385 (10)−0.0109 (10)0.0022 (9)−0.0152 (9)
C230.0417 (9)0.0467 (10)0.0299 (8)−0.0030 (7)−0.0084 (7)−0.0101 (7)

Geometric parameters (Å, °)

Ni1—N7i2.0783 (15)C6—C71.385 (3)
Ni1—N72.0783 (15)C6—C111.385 (3)
Ni1—N42.1028 (13)C7—C81.379 (3)
Ni1—N4i2.1028 (13)C7—H70.9300
Ni1—N12.1351 (14)C8—C91.360 (3)
Ni1—N1i2.1351 (14)C8—H80.9300
S1—C231.6282 (19)C9—C101.368 (4)
O1—C51.212 (2)C9—H90.9300
O2—C161.211 (2)C10—C111.378 (3)
N1—C21.327 (2)C10—H100.9300
N1—C11.351 (2)C11—H110.9300
N2—C21.327 (2)C12—H120.9300
N2—N31.355 (2)C13—H130.9300
N2—C31.461 (2)C14—C151.509 (2)
N3—C11.311 (2)C14—H14A0.9700
N4—C131.318 (2)C14—H14B0.9700
N4—C121.349 (2)C15—C161.507 (2)
N5—C131.322 (2)C15—H15A0.9700
N5—N61.349 (2)C15—H15B0.9700
N5—C141.460 (2)C16—C171.495 (2)
N6—C121.309 (2)C17—C181.379 (3)
N7—C231.162 (2)C17—C221.385 (2)
C1—H10.9300C18—C191.383 (3)
C2—H20.9300C18—H180.9300
C3—C41.516 (3)C19—C201.365 (3)
C3—H3A0.9700C19—H190.9300
C3—H3B0.9700C20—C211.371 (3)
C4—C51.508 (3)C20—H200.9300
C4—H4A0.9700C21—C221.379 (3)
C4—H4B0.9700C21—H210.9300
C5—C61.492 (3)C22—H220.9300
N7i—Ni1—N7180.0C8—C7—H7119.8
N7i—Ni1—N489.53 (6)C6—C7—H7119.8
N7—Ni1—N490.47 (6)C9—C8—C7120.7 (2)
N7i—Ni1—N4i90.47 (6)C9—C8—H8119.7
N7—Ni1—N4i89.53 (6)C7—C8—H8119.7
N4—Ni1—N4i180.0C8—C9—C10119.7 (2)
N7i—Ni1—N190.38 (6)C8—C9—H9120.2
N7—Ni1—N189.62 (6)C10—C9—H9120.2
N4—Ni1—N192.47 (5)C9—C10—C11120.4 (2)
N4i—Ni1—N187.53 (5)C9—C10—H10119.8
N7i—Ni1—N1i89.62 (6)C11—C10—H10119.8
N7—Ni1—N1i90.38 (6)C10—C11—C6120.6 (2)
N4—Ni1—N1i87.53 (5)C10—C11—H11119.7
N4i—Ni1—N1i92.47 (5)C6—C11—H11119.7
N1—Ni1—N1i180.0N6—C12—N4114.85 (17)
C2—N1—C1102.31 (15)N6—C12—H12122.6
C2—N1—Ni1128.52 (13)N4—C12—H12122.6
C1—N1—Ni1128.48 (12)N4—C13—N5110.34 (16)
C2—N2—N3110.13 (15)N4—C13—H13124.8
C2—N2—C3129.49 (17)N5—C13—H13124.8
N3—N2—C3120.18 (16)N5—C14—C15110.42 (15)
C1—N3—N2102.04 (15)N5—C14—H14A109.6
C13—N4—C12102.53 (14)C15—C14—H14A109.6
C13—N4—Ni1127.68 (12)N5—C14—H14B109.6
C12—N4—Ni1129.61 (12)C15—C14—H14B109.6
C13—N5—N6109.87 (14)H14A—C14—H14B108.1
C13—N5—C14129.32 (16)C16—C15—C14112.64 (15)
N6—N5—C14120.71 (14)C16—C15—H15A109.1
C12—N6—N5102.40 (14)C14—C15—H15A109.1
C23—N7—Ni1149.53 (14)C16—C15—H15B109.1
N3—C1—N1115.41 (17)C14—C15—H15B109.1
N3—C1—H1122.3H15A—C15—H15B107.8
N1—C1—H1122.3O2—C16—C17121.11 (16)
N2—C2—N1110.11 (17)O2—C16—C15120.90 (16)
N2—C2—H2124.9C17—C16—C15117.98 (16)
N1—C2—H2124.9C18—C17—C22118.80 (17)
N2—C3—C4113.09 (16)C18—C17—C16122.40 (16)
N2—C3—H3A109.0C22—C17—C16118.79 (17)
C4—C3—H3A109.0C17—C18—C19120.34 (19)
N2—C3—H3B109.0C17—C18—H18119.8
C4—C3—H3B109.0C19—C18—H18119.8
H3A—C3—H3B107.8C20—C19—C18120.2 (2)
C5—C4—C3113.39 (17)C20—C19—H19119.9
C5—C4—H4A108.9C18—C19—H19119.9
C3—C4—H4A108.9C19—C20—C21120.16 (19)
C5—C4—H4B108.9C19—C20—H20119.9
C3—C4—H4B108.9C21—C20—H20119.9
H4A—C4—H4B107.7C20—C21—C22119.97 (19)
O1—C5—C6120.63 (19)C20—C21—H21120.0
O1—C5—C4120.17 (19)C22—C21—H21120.0
C6—C5—C4119.19 (17)C21—C22—C17120.5 (2)
C7—C6—C11118.2 (2)C21—C22—H22119.8
C7—C6—C5122.69 (18)C17—C22—H22119.8
C11—C6—C5119.16 (18)N7—C23—S1176.90 (16)
C8—C7—C6120.5 (2)
N7i—Ni1—N1—C20.68 (14)O1—C5—C6—C7−177.0 (2)
N7—Ni1—N1—C2−179.32 (14)C4—C5—C6—C74.0 (3)
N4—Ni1—N1—C290.22 (14)O1—C5—C6—C112.2 (3)
N4i—Ni1—N1—C2−89.78 (14)C4—C5—C6—C11−176.77 (18)
N7i—Ni1—N1—C1169.37 (15)C11—C6—C7—C8−0.5 (3)
N7—Ni1—N1—C1−10.63 (15)C5—C6—C7—C8178.7 (2)
N4—Ni1—N1—C1−101.08 (15)C6—C7—C8—C90.1 (4)
N4i—Ni1—N1—C178.92 (15)C7—C8—C9—C100.4 (4)
C2—N2—N3—C10.4 (2)C8—C9—C10—C11−0.6 (4)
C3—N2—N3—C1175.77 (16)C9—C10—C11—C60.2 (4)
N7i—Ni1—N4—C13−19.91 (15)C7—C6—C11—C100.3 (3)
N7—Ni1—N4—C13160.09 (15)C5—C6—C11—C10−178.9 (2)
N1—Ni1—N4—C13−110.27 (15)N5—N6—C12—N4−0.2 (2)
N1i—Ni1—N4—C1369.73 (15)C13—N4—C12—N60.5 (2)
N7i—Ni1—N4—C12165.83 (16)Ni1—N4—C12—N6175.88 (13)
N7—Ni1—N4—C12−14.17 (16)C12—N4—C13—N5−0.6 (2)
N1—Ni1—N4—C1275.48 (16)Ni1—N4—C13—N5−176.09 (11)
N1i—Ni1—N4—C12−104.52 (16)N6—N5—C13—N40.5 (2)
C13—N5—N6—C12−0.2 (2)C14—N5—C13—N4176.90 (16)
C14—N5—N6—C12−176.91 (17)C13—N5—C14—C15128.03 (19)
N4—Ni1—N7—C2332.2 (3)N6—N5—C14—C15−55.9 (2)
N4i—Ni1—N7—C23−147.8 (3)N5—C14—C15—C16−177.37 (15)
N1—Ni1—N7—C23−60.3 (3)C14—C15—C16—O26.2 (3)
N1i—Ni1—N7—C23119.7 (3)C14—C15—C16—C17−174.59 (16)
N2—N3—C1—N1−0.2 (2)O2—C16—C17—C18173.0 (2)
C2—N1—C1—N3−0.1 (2)C15—C16—C17—C18−6.3 (3)
Ni1—N1—C1—N3−171.03 (12)O2—C16—C17—C22−6.5 (3)
N3—N2—C2—N1−0.5 (2)C15—C16—C17—C22174.30 (17)
C3—N2—C2—N1−175.28 (16)C22—C17—C18—C191.5 (3)
C1—N1—C2—N20.33 (19)C16—C17—C18—C19−177.93 (19)
Ni1—N1—C2—N2171.29 (11)C17—C18—C19—C20−1.3 (3)
C2—N2—C3—C4−110.8 (2)C18—C19—C20—C210.2 (4)
N3—N2—C3—C474.8 (2)C19—C20—C21—C220.6 (4)
N2—C3—C4—C579.4 (2)C20—C21—C22—C17−0.4 (3)
C3—C4—C5—O11.3 (3)C18—C17—C22—C21−0.7 (3)
C3—C4—C5—C6−179.74 (16)C16—C17—C22—C21178.80 (19)

Symmetry codes: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2286).

References

  • Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322–m1324.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yue, Y. F., Gao, E. Q., Fang, C. J., Zheng, T., Liang, J. & Yan, C. H. (2008). Cryst. Growth Des.9, 3295–3301.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography