PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3262.
Published online 2010 November 20. doi:  10.1107/S1600536810047276
PMCID: PMC3011654

1-Adamantylmethyl 2-amino­benzoate

Abstract

The asymmetric unit of the title compound, C18H23NO2, consists of two crystallographically independent mol­ecules bearing an adamantane cage consisting of three fused cyclo­hexane rings in almost ideal chair conformations, with C—C—C angles in the range 108.47 (16)–110.59 (15)°. Both aryl rings are essentially planar, the maximum deviation from the best plane being 0.0125 (19) Å. One conformer forms chains parallel to the b axis via N—H(...)O hydrogen bonds, whereas the second exhibits only an intra­molecular N—H(...)O hydrogen bond. The crystal structure is stabilized by further weak N—H(...)O and N—H(...)N inter­actions.

Related literature

For some important biologically active compounds bearing the adamantane moiety, see: Jia et al. (2005 [triangle]); van der Schyf & Geldenhuys (2009) [triangle]. For the synthesis, see: Vícha et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3262-scheme1.jpg

Experimental

Crystal data

  • C18H23NO2
  • M r = 285.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3262-efi1.jpg
  • a = 25.8665 (19) Å
  • b = 6.4575 (4) Å
  • c = 38.6173 (8) Å
  • β = 106.904 (7)°
  • V = 6171.7 (6) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 120 K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.849, T max = 1.000
  • 23009 measured reflections
  • 5431 independent reflections
  • 2752 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.061
  • S = 1.04
  • 5431 reflections
  • 395 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047276/nk2072sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047276/nk2072Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this work by an inter­nal grant from TBU in Zlín (No. IGA/7/FT/10/D) funded from the resources of specific university research is gratefully acknowledged.

supplementary crystallographic information

Comment

Adamantane is a polycyclic hydrocarbon isolated by Czech chemists from petroleum fraction in the year 1933. Owing to its high lipophilicity and stability, adamantane is frequently used for the modification of compounds with known biological activity. The resulting molecules can display better pharmacodynamic and/or pharmacokinetic properties, such as SQ-109 – tuberculostatic agent derived from ethambutol (L. Jia et al. 2005) or saxagliptin – type 2 diabetes medicament (van der Schyf & Geldenhuys, 2009).

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules slightly varying in their geometries. Both benzene rings are essentially planar with maximum deviations from the best plane being 0.0080 (19) Å for atom C5 in the first molecule and 0.0125 (19) Å for atom C22 in the second one. The dihedral angle between the best planes of the benzene rings is 26.889 (6)°. The torsion angles describing arrangement of benzene ring, adamantane cage and C7—O8—C9 linker C18–C10–C9–O8, C10–C9–O8–C7, C6–C7–O8–C9 and C1–C6–C7–O1 are -177.40 (14), -152.23 (16), -177.92 (15) and 14.4 (3)°, respectively. The values of corresponding torsion angles for the second distinct conformer are 174.24 (14), 160.52 (15), 177.07 (15) and -9.1 (3)°, respectively. While one conformer forms chains via N—H···O H-bonds parallel to the b-axis, the second conformer exhibits only intramolecular N—H···O hydrogen bond (Fig. 2, Table 1).

Experimental

The corresponding nitro ester - starting material for title compound preparation - was obtained by a procedure described previously (Vícha et al., 2009). The nitro ester (100 mg, 0.3 mmol) was dissolved in 5 ml of methanol and a portion of iron powder (134 mg, 2.4 mmol) was added. Concentrated hydrochloric acid (1 ml) was added into well stirred mixture. Reaction mixture was kept under reflux until starting material disappeared. The reaction mixture was poured into 5% aqueous Na2CO3 (10 ml) and extracted with mixture of hexane/diethyl ether, 2/1, v/v several times. The collected organic layers were dried over anhydrous Na2SO4 and crude product was obtained after solvent evaporation. Column chromatography (petroleum ether/ethyl acetate, 8:1, v/v) yielded 71 mg (83%) of yellow crystalline powder. The single-crystal used for data collection was obtained by crystallization from chloroform at room temperature.

Refinement

Carbon bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to 1.2Ueq of their parent atoms. Nitrogen bound hydrogen atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids. H atoms are shown as small spheres at arbitrary radii.
Fig. 2.
Part of the crystal structure of the title compound shows chain of one crystallographically independent conformer linked by H-bonds (dashed lines) along the b-axis. Intramolecular H-bonds N1—H1B—O1 and hydrogen atoms except for those participating ...

Crystal data

C18H23NO2F(000) = 2464
Mr = 285.37Dx = 1.229 Mg m3
Monoclinic, C2/cMelting point = 366–362 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.8665 (19) ÅCell parameters from 4567 reflections
b = 6.4575 (4) Åθ = 2.7–27.3°
c = 38.6173 (8) ŵ = 0.08 mm1
β = 106.904 (7)°T = 120 K
V = 6171.7 (6) Å3Block, yellow
Z = 160.40 × 0.30 × 0.30 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector5431 independent reflections
Radiation source: Enhance (Mo) X-ray Source2752 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = −30→30
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −7→7
Tmin = 0.849, Tmax = 1.000l = −38→45
23009 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.015P)2] where P = (Fo2 + 2Fc2)/3
5431 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.27207 (5)0.3902 (2)0.21497 (4)0.0515 (4)
N10.29950 (7)0.0010 (4)0.24145 (5)0.0430 (5)
C10.33939 (7)0.0205 (3)0.22478 (5)0.0301 (5)
C20.37972 (8)−0.1306 (3)0.23019 (5)0.0372 (5)
H20.3797−0.24320.24600.045*
C30.41922 (8)−0.1190 (3)0.21309 (5)0.0422 (6)
H30.4464−0.22270.21750.051*
C40.42012 (8)0.0413 (3)0.18949 (5)0.0429 (6)
H40.44760.04880.17770.052*
C50.38052 (7)0.1888 (3)0.18354 (5)0.0338 (5)
H50.38050.29780.16700.041*
C60.34023 (7)0.1848 (3)0.20085 (5)0.0251 (5)
C70.30047 (8)0.3546 (3)0.19566 (5)0.0318 (5)
O80.29882 (4)0.4694 (2)0.16652 (3)0.0386 (4)
C90.26212 (7)0.6481 (3)0.15911 (5)0.0394 (6)
H9A0.28070.77120.17230.047*
H9B0.23000.61870.16740.047*
C100.24490 (7)0.6899 (3)0.11885 (5)0.0272 (5)
C110.21169 (7)0.5078 (3)0.09824 (4)0.0294 (5)
H11A0.23430.38140.10210.035*
H11B0.18050.48130.10760.035*
C120.19154 (7)0.5575 (3)0.05766 (5)0.0323 (5)
H120.17000.43790.04450.039*
C130.15625 (7)0.7498 (3)0.05152 (5)0.0380 (5)
H13A0.12440.72530.06030.046*
H13B0.14320.78130.02530.046*
C140.18892 (7)0.9333 (3)0.07187 (5)0.0350 (5)
H140.16561.05980.06790.042*
C150.23731 (7)0.9710 (3)0.05761 (5)0.0387 (5)
H15A0.22461.00450.03150.046*
H15B0.25861.08980.07050.046*
C160.27263 (7)0.7773 (3)0.06352 (5)0.0338 (5)
H160.30430.80240.05410.041*
C170.29290 (7)0.7285 (3)0.10409 (5)0.0345 (5)
H17A0.31630.60430.10810.041*
H17B0.31460.84600.11710.041*
C180.20872 (7)0.8839 (3)0.11237 (5)0.0336 (5)
H18A0.17740.85980.12170.040*
H18B0.22941.00300.12560.040*
C190.23996 (7)0.5952 (3)0.04336 (5)0.0357 (5)
H19A0.26290.46970.04700.043*
H19B0.22730.62560.01710.043*
O210.63002 (5)0.95579 (19)0.15600 (3)0.0426 (4)
N210.67083 (8)0.6087 (4)0.19276 (5)0.0466 (6)
C210.61810 (8)0.5686 (3)0.19077 (5)0.0310 (5)
C220.60638 (8)0.3934 (3)0.20847 (5)0.0376 (5)
H220.63470.30060.21990.045*
C230.55515 (9)0.3530 (3)0.20973 (5)0.0409 (6)
H230.54860.23470.22250.049*
C240.51230 (8)0.4830 (3)0.19257 (5)0.0391 (5)
H240.47670.45540.19360.047*
C250.52287 (7)0.6526 (3)0.17406 (5)0.0321 (5)
H250.49380.73980.16160.039*
C260.57499 (7)0.6995 (3)0.17309 (5)0.0255 (5)
C270.58532 (8)0.8871 (3)0.15428 (5)0.0300 (5)
O280.53969 (4)0.97894 (19)0.13458 (3)0.0327 (3)
C290.54562 (7)1.1712 (3)0.11641 (5)0.0317 (5)
H29A0.57671.16050.10640.038*
H29B0.55251.28730.13390.038*
C300.49414 (7)1.2116 (3)0.08609 (5)0.0244 (5)
C310.48638 (7)1.0487 (3)0.05613 (4)0.0301 (5)
H31A0.51831.04800.04690.036*
H31B0.48310.90980.06610.036*
C320.43554 (7)1.0966 (3)0.02513 (5)0.0310 (5)
H320.43080.98890.00590.037*
C330.38650 (7)1.0953 (3)0.03946 (5)0.0374 (6)
H33A0.38250.95680.04940.045*
H33B0.35351.12490.01950.045*
C340.39332 (7)1.2585 (3)0.06906 (5)0.0343 (5)
H340.36111.25700.07840.041*
C350.39899 (7)1.4717 (3)0.05345 (5)0.0368 (5)
H35A0.40351.57830.07250.044*
H35B0.36591.50470.03370.044*
C360.44816 (7)1.4731 (3)0.03881 (5)0.0308 (5)
H360.45181.61280.02860.037*
C370.49895 (7)1.4253 (3)0.06989 (4)0.0286 (5)
H37A0.50381.53260.08890.034*
H37B0.53101.42800.06080.034*
C380.44432 (6)1.2112 (3)0.09989 (4)0.0306 (5)
H38A0.44071.07400.11040.037*
H38B0.44881.31650.11920.037*
C390.44104 (7)1.3093 (3)0.00931 (5)0.0346 (5)
H39A0.47271.3104−0.00020.041*
H39B0.40831.3401−0.01090.041*
H1B0.2805 (7)0.125 (3)0.2443 (5)0.054 (7)*
H21B0.6966 (9)0.517 (3)0.2037 (6)0.094 (10)*
H1A0.3045 (8)−0.098 (3)0.2590 (5)0.073 (9)*
H21A0.6781 (7)0.722 (3)0.1807 (5)0.058 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0435 (9)0.0695 (12)0.0492 (10)0.0164 (8)0.0257 (8)0.0112 (8)
N10.0432 (12)0.0529 (16)0.0355 (13)−0.0100 (12)0.0158 (10)0.0053 (12)
C10.0284 (12)0.0392 (14)0.0219 (12)−0.0115 (11)0.0062 (10)−0.0021 (11)
C20.0480 (14)0.0317 (14)0.0287 (13)−0.0019 (12)0.0061 (12)0.0079 (11)
C30.0460 (14)0.0404 (15)0.0404 (14)0.0098 (11)0.0127 (12)0.0029 (12)
C40.0452 (14)0.0486 (16)0.0421 (15)0.0107 (12)0.0240 (11)0.0114 (13)
C50.0370 (13)0.0396 (15)0.0274 (13)0.0035 (11)0.0133 (11)0.0069 (11)
C60.0211 (11)0.0283 (13)0.0240 (12)−0.0006 (10)0.0035 (10)0.0013 (10)
C70.0334 (13)0.0379 (14)0.0240 (13)−0.0071 (11)0.0083 (11)0.0017 (12)
O80.0392 (8)0.0427 (9)0.0329 (9)0.0116 (7)0.0091 (7)0.0055 (8)
C90.0362 (12)0.0390 (14)0.0389 (14)0.0087 (11)0.0042 (11)−0.0053 (11)
C100.0303 (12)0.0310 (13)0.0191 (12)−0.0015 (10)0.0051 (10)0.0010 (10)
C110.0352 (11)0.0279 (12)0.0277 (12)−0.0031 (10)0.0131 (9)−0.0019 (10)
C120.0372 (12)0.0319 (14)0.0252 (13)−0.0100 (10)0.0050 (10)−0.0052 (10)
C130.0366 (12)0.0472 (15)0.0293 (13)−0.0004 (12)0.0083 (10)0.0025 (12)
C140.0384 (13)0.0295 (14)0.0361 (14)0.0084 (10)0.0092 (11)0.0024 (11)
C150.0450 (13)0.0280 (13)0.0428 (14)−0.0057 (11)0.0123 (11)0.0031 (11)
C160.0337 (12)0.0318 (13)0.0392 (14)−0.0045 (11)0.0160 (11)0.0013 (11)
C170.0271 (11)0.0305 (13)0.0439 (15)0.0009 (10)0.0070 (11)−0.0006 (11)
C180.0416 (12)0.0302 (13)0.0296 (13)0.0076 (10)0.0114 (10)0.0003 (10)
C190.0480 (13)0.0329 (13)0.0283 (13)0.0034 (11)0.0146 (11)0.0038 (11)
O210.0267 (8)0.0497 (10)0.0507 (10)−0.0001 (8)0.0104 (7)0.0114 (8)
N210.0338 (13)0.0507 (15)0.0521 (14)0.0090 (12)0.0077 (11)0.0114 (12)
C210.0349 (13)0.0371 (14)0.0206 (12)0.0017 (11)0.0077 (10)−0.0049 (11)
C220.0454 (14)0.0353 (14)0.0266 (13)0.0074 (12)0.0016 (11)0.0000 (11)
C230.0613 (16)0.0279 (14)0.0324 (14)−0.0001 (12)0.0122 (13)0.0038 (11)
C240.0408 (13)0.0379 (14)0.0427 (14)−0.0015 (12)0.0186 (11)0.0032 (12)
C250.0354 (13)0.0299 (13)0.0298 (13)0.0041 (10)0.0073 (10)0.0020 (11)
C260.0280 (12)0.0264 (13)0.0221 (12)0.0030 (10)0.0072 (10)0.0013 (10)
C270.0255 (12)0.0394 (14)0.0240 (12)0.0069 (11)0.0055 (11)−0.0005 (11)
O280.0267 (7)0.0332 (9)0.0345 (8)−0.0012 (7)0.0032 (6)0.0119 (7)
C290.0330 (12)0.0282 (13)0.0311 (13)−0.0032 (10)0.0049 (10)0.0056 (11)
C300.0262 (11)0.0238 (12)0.0217 (12)−0.0007 (9)0.0046 (10)0.0022 (10)
C310.0364 (12)0.0224 (12)0.0313 (12)−0.0003 (10)0.0095 (10)0.0026 (10)
C320.0429 (13)0.0259 (13)0.0221 (12)−0.0067 (10)0.0063 (11)−0.0050 (10)
C330.0316 (12)0.0385 (14)0.0341 (13)−0.0098 (10)−0.0030 (11)0.0100 (11)
C340.0256 (12)0.0456 (15)0.0324 (13)0.0023 (10)0.0095 (10)0.0097 (12)
C350.0359 (12)0.0401 (15)0.0310 (13)0.0075 (11)0.0044 (10)0.0030 (11)
C360.0384 (12)0.0232 (12)0.0299 (13)−0.0018 (10)0.0086 (10)0.0068 (11)
C370.0327 (11)0.0248 (13)0.0272 (12)−0.0028 (10)0.0071 (10)0.0006 (10)
C380.0354 (12)0.0332 (13)0.0240 (12)−0.0009 (10)0.0099 (10)0.0031 (10)
C390.0357 (12)0.0363 (14)0.0290 (13)−0.0015 (10)0.0051 (10)0.0043 (11)

Geometric parameters (Å, °)

O1—C71.211 (2)O21—C271.2222 (19)
N1—C11.372 (2)N21—C211.368 (2)
N1—H1B0.961 (17)N21—H21B0.90 (2)
N1—H1A0.913 (19)N21—H21A0.912 (18)
C1—C21.399 (2)C21—C221.400 (2)
C1—C61.412 (2)C21—C261.408 (2)
C2—C31.370 (2)C22—C231.365 (2)
C2—H20.9500C22—H220.9500
C3—C41.384 (2)C23—C241.395 (2)
C3—H30.9500C23—H230.9500
C4—C51.368 (2)C24—C251.378 (2)
C4—H40.9500C24—H240.9500
C5—C61.392 (2)C25—C261.393 (2)
C5—H50.9500C25—H250.9500
C6—C71.476 (2)C26—C271.476 (2)
C7—O81.3379 (19)C27—O281.3422 (19)
O8—C91.4688 (18)O28—C291.4562 (18)
C9—C101.512 (2)C29—C301.518 (2)
C9—H9A0.9900C29—H29A0.9900
C9—H9B0.9900C29—H29B0.9900
C10—C171.530 (2)C30—C381.531 (2)
C10—C111.535 (2)C30—C311.533 (2)
C10—C181.540 (2)C30—C371.535 (2)
C11—C121.535 (2)C31—C321.531 (2)
C11—H11A0.9900C31—H31A0.9900
C11—H11B0.9900C31—H31B0.9900
C12—C131.519 (2)C32—C331.524 (2)
C12—C191.528 (2)C32—C391.526 (2)
C12—H121.0000C32—H321.0000
C13—C141.533 (2)C33—C341.527 (2)
C13—H13A0.9900C33—H33A0.9900
C13—H13B0.9900C33—H33B0.9900
C14—C151.526 (2)C34—C351.527 (2)
C14—C181.531 (2)C34—C381.529 (2)
C14—H141.0000C34—H341.0000
C15—C161.526 (2)C35—C361.535 (2)
C15—H15A0.9900C35—H35A0.9900
C15—H15B0.9900C35—H35B0.9900
C16—C191.523 (2)C36—C391.526 (2)
C16—C171.534 (2)C36—C371.531 (2)
C16—H161.0000C36—H361.0000
C17—H17A0.9900C37—H37A0.9900
C17—H17B0.9900C37—H37B0.9900
C18—H18A0.9900C38—H38A0.9900
C18—H18B0.9900C38—H38B0.9900
C19—H19A0.9900C39—H39A0.9900
C19—H19B0.9900C39—H39B0.9900
C1—N1—H1B117.1 (11)C21—N21—H21B119.5 (14)
C1—N1—H1A116.6 (13)C21—N21—H21A118.2 (12)
H1B—N1—H1A117.9 (18)H21B—N21—H21A122.0 (18)
N1—C1—C2119.7 (2)N21—C21—C22118.7 (2)
N1—C1—C6122.2 (2)N21—C21—C26123.3 (2)
C2—C1—C6117.99 (18)C22—C21—C26117.94 (19)
C3—C2—C1121.22 (19)C23—C22—C21121.48 (19)
C3—C2—H2119.4C23—C22—H22119.3
C1—C2—H2119.4C21—C22—H22119.3
C2—C3—C4121.0 (2)C22—C23—C24120.88 (19)
C2—C3—H3119.5C22—C23—H23119.6
C4—C3—H3119.5C24—C23—H23119.6
C5—C4—C3118.41 (19)C25—C24—C23118.35 (18)
C5—C4—H4120.8C25—C24—H24120.8
C3—C4—H4120.8C23—C24—H24120.8
C4—C5—C6122.36 (19)C24—C25—C26121.76 (18)
C4—C5—H5118.8C24—C25—H25119.1
C6—C5—H5118.8C26—C25—H25119.1
C5—C6—C1118.95 (18)C25—C26—C21119.53 (18)
C5—C6—C7120.69 (18)C25—C26—C27120.45 (17)
C1—C6—C7120.29 (18)C21—C26—C27120.00 (18)
O1—C7—O8122.43 (19)O21—C27—O28122.17 (18)
O1—C7—C6125.50 (19)O21—C27—C26125.10 (18)
O8—C7—C6112.08 (18)O28—C27—C26112.73 (17)
C7—O8—C9117.37 (15)C27—O28—C29116.84 (14)
O8—C9—C10108.72 (15)O28—C29—C30109.06 (14)
O8—C9—H9A109.9O28—C29—H29A109.9
C10—C9—H9A109.9C30—C29—H29A109.9
O8—C9—H9B109.9O28—C29—H29B109.9
C10—C9—H9B109.9C30—C29—H29B109.9
H9A—C9—H9B108.3H29A—C29—H29B108.3
C9—C10—C17112.57 (15)C29—C30—C38111.68 (14)
C9—C10—C11110.47 (15)C29—C30—C31110.92 (14)
C17—C10—C11108.91 (15)C38—C30—C31108.83 (14)
C9—C10—C18107.19 (15)C29—C30—C37108.17 (14)
C17—C10—C18109.11 (15)C38—C30—C37108.64 (14)
C11—C10—C18108.48 (14)C31—C30—C37108.53 (14)
C12—C11—C10110.00 (14)C32—C31—C30110.24 (14)
C12—C11—H11A109.7C32—C31—H31A109.6
C10—C11—H11A109.7C30—C31—H31A109.6
C12—C11—H11B109.7C32—C31—H31B109.6
C10—C11—H11B109.7C30—C31—H31B109.6
H11A—C11—H11B108.2H31A—C31—H31B108.1
C13—C12—C19109.38 (16)C33—C32—C39109.54 (15)
C13—C12—C11109.92 (15)C33—C32—C31109.36 (15)
C19—C12—C11109.37 (14)C39—C32—C31109.63 (15)
C13—C12—H12109.4C33—C32—H32109.4
C19—C12—H12109.4C39—C32—H32109.4
C11—C12—H12109.4C31—C32—H32109.4
C12—C13—C14109.60 (14)C32—C33—C34109.93 (15)
C12—C13—H13A109.7C32—C33—H33A109.7
C14—C13—H13A109.7C34—C33—H33A109.7
C12—C13—H13B109.7C32—C33—H33B109.7
C14—C13—H13B109.8C34—C33—H33B109.7
H13A—C13—H13B108.2H33A—C33—H33B108.2
C15—C14—C18109.61 (15)C33—C34—C35109.28 (15)
C15—C14—C13109.02 (15)C33—C34—C38109.33 (15)
C18—C14—C13109.49 (15)C35—C34—C38109.11 (15)
C15—C14—H14109.6C33—C34—H34109.7
C18—C14—H14109.6C35—C34—H34109.7
C13—C14—H14109.6C38—C34—H34109.7
C16—C15—C14109.49 (15)C34—C35—C36109.62 (15)
C16—C15—H15A109.8C34—C35—H35A109.7
C14—C15—H15A109.8C36—C35—H35A109.7
C16—C15—H15B109.8C34—C35—H35B109.7
C14—C15—H15B109.8C36—C35—H35B109.7
H15A—C15—H15B108.2H35A—C35—H35B108.2
C19—C16—C15109.71 (15)C39—C36—C37109.59 (15)
C19—C16—C17109.71 (15)C39—C36—C35109.73 (15)
C15—C16—C17109.45 (15)C37—C36—C35108.90 (14)
C19—C16—H16109.3C39—C36—H36109.5
C15—C16—H16109.3C37—C36—H36109.5
C17—C16—H16109.3C35—C36—H36109.5
C10—C17—C16109.93 (14)C36—C37—C30110.36 (14)
C10—C17—H17A109.7C36—C37—H37A109.6
C16—C17—H17A109.7C30—C37—H37A109.6
C10—C17—H17B109.7C36—C37—H37B109.6
C16—C17—H17B109.7C30—C37—H37B109.6
H17A—C17—H17B108.2H37A—C37—H37B108.1
C14—C18—C10110.02 (14)C34—C38—C30110.57 (14)
C14—C18—H18A109.7C34—C38—H38A109.5
C10—C18—H18A109.7C30—C38—H38A109.5
C14—C18—H18B109.7C34—C38—H38B109.5
C10—C18—H18B109.7C30—C38—H38B109.5
H18A—C18—H18B108.2H38A—C38—H38B108.1
C16—C19—C12109.24 (15)C36—C39—C32109.27 (15)
C16—C19—H19A109.8C36—C39—H39A109.8
C12—C19—H19A109.8C32—C39—H39A109.8
C16—C19—H19B109.8C36—C39—H39B109.8
C12—C19—H19B109.8C32—C39—H39B109.8
H19A—C19—H19B108.3H39A—C39—H39B108.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.961 (17)2.030 (18)2.729 (3)128.0 (14)
N21—H21B···N1i0.90 (2)2.64 (2)3.385 (3)140.9 (17)
N1—H1A···O1ii0.913 (19)2.47 (2)2.930 (2)111.4 (15)
N1—H1A···N21iii0.913 (19)2.60 (2)3.511 (3)173.4 (17)
N21—H21A···O210.912 (18)2.014 (19)2.698 (3)130.6 (16)
N21—H21A···O1i0.912 (18)2.641 (18)3.097 (2)111.8 (14)

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, y−1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2072).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jia, L., Tomaszewski, J. E., Hanrahan, C., Coward, L., Noker, P., Gorman, G., Nikonenko, B. & Protopopova, M. (2005). Br. J. Pharmacol.144, 80–87. [PMC free article] [PubMed]
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Oxford Diffraction. (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Schyf, C. J. van der & Geldenhuys, W. J. (2009). Neurotherapeutics, 6, 175–186. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vícha, R., Kuřitka, I., Rouchal, M., Ježková, V. & Zierhut, A. (2009). Arkivoc, 12, 60–80.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography