PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3338.
Published online 2010 November 27. doi:  10.1107/S160053681004897X
PMCID: PMC3011652

Methyl 2-(4-chloro­benzamido)­benzoate

Abstract

In the title compound, C15H12ClNO3, the central C—C(O)—N—C amide unit makes dihedral angles of 6.60 (2) and 3.42 (2)°, respectively, with the 4-chloro­benzene and anilino rings. The dihedral angle between the two benzene rings is 3.32 (3)°. Intra­molecular N—H(...)O and C—H(...)O hydrogen bonds form S(6) rings and contribute to the planarity of this portion of the mol­ecule. In the crystal, inter­molecular C—H(...)O hydrogen bonds are observed, which link the mol­ecules into [010] C(7) chains.

Related literature

For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]). For related structures, see: Gowda et al. (2008 [triangle]); Zhou & Zheng (2007 [triangle]); Khan et al. (2010 [triangle]). Benzamide derivatives are frequently used in the synthesis of new and effective anti-convulsant agents, see: Clark et al. (1988 [triangle]); Leander et al. (1988 [triangle]); Diouf et al. (1997 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3338-scheme1.jpg

Experimental

Crystal data

  • C15H12ClNO3
  • M r = 289.71
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3338-efi1.jpg
  • a = 7.3788 (9) Å
  • b = 16.757 (2) Å
  • c = 21.530 (2) Å
  • V = 2662.0 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.21 × 0.12 × 0.08 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • 11139 measured reflections
  • 2399 independent reflections
  • 814 reflections with I > 2σ(I)
  • R int = 0.166

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.134
  • S = 0.97
  • 2399 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004897X/om2376sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004897X/om2376Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

Benzamide derivatives are frequently used in the synthesis of new and effective anti-convulsant agents (Clark et al., 1988; Leander et al., 1988; Diouf et al., 1997). In continuation of our ongoing structural studies of benzamide derivatives (Khan et al., 2010), herein the crystal structure of title compound is described.

In the title compound, Fig. 1, the C1—N1—C9(O1)—C10 amide unit is planar, r.m.s. deviation 0.0102 Å, and subtends dihedral angles of 3.42 (2)° and 6.60 (2)° respectively to the C1···C6 and C10···C15 rings. The two aromatic rings are inclined at 3.32 (3)°. Bond distances within the molecule are normal (Allen et al. 1987) and similar to those observed in comparable structures (Gowda et al. 2008; Zhou & Zheng 2007).

The intramolecular C2—H2···O1 and N1—H1···O2 hydrogen bonds produce S(6) rings (Bernstein et al., 1995) (Fig. 1). The C3—H3 group in the molecule at acts as a hydrogen-bond donor to atom O2i (symmetry code: -x+1/2, y+1/2, z) forming a C(7) chain running parallel to the [010] direction (Fig. 2).

Experimental

A solution of methyl anthranilate (390 µl, 3 mmol) in dichloromethane (15 ml) was treated dropwise with 4-chlorobenzoyl chloride (383 µl, 3 mmol) in the presence of triethanolamine (5 ml) as a catalyst. The resulting mixture was stirred for 1 h. On completion of reaction, precipitates formed, were filtered, dried and crystallized from methanol to yield colorless blocks of the title compound.

Refinement

All H-atoms were refined using riding model for hydrogen bonds with d(C—H) = 0.93Å (Uiso=1.2Ueq of the parent atom) for aromatic carbon atoms, d(N—H) = 0.86Å (Uiso=1.2Ueq of the parent atom) for imine nitrogen atom and d(C—H) = 0.96Å (Uiso=1.5Ueq of the parent atom) for methyl carbon atom.

Figures

Fig. 1.
A view of the title compound showing displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.
Fig. 2.
Part of the crystal structure, showing the formation of a C(7) chain running parallel to the [010] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted (symmetry code: i = -x+1/2, y+1/2, z)).

Crystal data

C15H12ClNO3F(000) = 1200
Mr = 289.71Dx = 1.446 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11747 reflections
a = 7.3788 (9) Åθ = 3.1–16.8°
b = 16.757 (2) ŵ = 0.29 mm1
c = 21.530 (2) ÅT = 296 K
V = 2662.0 (5) Å3Block, colorless
Z = 80.21 × 0.12 × 0.08 mm

Data collection

Bruker SMART APEXII diffractometer814 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.166
graphiteθmax = 25.2°, θmin = 3.1°
[var phi] and ω scansh = −9→5
11139 measured reflectionsk = −20→20
2399 independent reflectionsl = −26→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0301P)2] where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2912 (7)0.0979 (3)0.5068 (2)0.0455 (14)
C20.3378 (8)0.1763 (3)0.5195 (2)0.0592 (16)
H20.39270.18920.55710.071*
C30.3031 (8)0.2348 (3)0.4770 (3)0.0663 (17)
H30.33570.28720.48570.080*
C40.2209 (7)0.2174 (3)0.4215 (3)0.0637 (17)
H40.19550.25800.39330.076*
C50.1760 (7)0.1399 (3)0.4076 (2)0.0533 (16)
H50.12130.12810.36980.064*
C60.2116 (7)0.0788 (3)0.4498 (2)0.0425 (14)
C70.1648 (7)−0.0040 (3)0.4327 (2)0.0487 (16)
C80.0594 (7)−0.0888 (3)0.3536 (2)0.0757 (19)
H8A0.1720−0.11360.34240.113*
H8B−0.0180−0.08610.31780.113*
H8C0.0013−0.11960.38550.113*
C90.3924 (7)0.0410 (3)0.6083 (2)0.0522 (16)
C100.4046 (7)−0.0374 (3)0.6420 (2)0.0447 (14)
C110.3391 (7)−0.1095 (3)0.6209 (2)0.0515 (16)
H110.2803−0.11180.58270.062*
C120.3590 (7)−0.1781 (3)0.6552 (2)0.0559 (16)
H120.3158−0.22650.64010.067*
C130.4442 (7)−0.1741 (3)0.7124 (2)0.0523 (15)
C140.5107 (7)−0.1034 (3)0.7343 (2)0.0571 (16)
H140.5693−0.10130.77250.069*
C150.4904 (7)−0.0356 (3)0.6994 (2)0.0557 (16)
H150.53490.01260.71450.067*
N10.3251 (5)0.0360 (2)0.54958 (18)0.0502 (12)
H10.2999−0.01130.53680.060*
O10.4375 (6)0.1027 (2)0.63322 (15)0.0849 (14)
O20.1871 (5)−0.06159 (18)0.46533 (15)0.0636 (12)
O30.0940 (5)−0.00921 (19)0.37634 (15)0.0615 (11)
Cl10.4671 (2)−0.25964 (8)0.75727 (6)0.0747 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.043 (4)0.042 (3)0.051 (4)0.003 (3)0.009 (3)−0.003 (3)
C20.073 (5)0.050 (4)0.054 (4)−0.003 (3)0.004 (3)−0.004 (3)
C30.085 (5)0.041 (3)0.073 (4)−0.003 (4)0.008 (4)−0.006 (3)
C40.070 (5)0.051 (4)0.070 (4)0.013 (4)0.012 (4)0.008 (3)
C50.054 (5)0.052 (4)0.054 (4)0.004 (3)0.004 (3)0.006 (3)
C60.039 (4)0.047 (3)0.041 (3)0.001 (3)0.005 (3)0.005 (3)
C70.048 (5)0.054 (4)0.044 (4)0.000 (4)0.001 (3)0.004 (3)
C80.110 (6)0.056 (4)0.061 (4)−0.006 (4)−0.022 (4)−0.008 (3)
C90.054 (5)0.058 (4)0.045 (4)0.001 (3)−0.001 (3)−0.008 (3)
C100.042 (4)0.060 (4)0.033 (3)0.003 (3)0.003 (3)−0.006 (3)
C110.057 (5)0.061 (4)0.037 (3)−0.001 (3)−0.010 (3)−0.001 (3)
C120.064 (5)0.055 (4)0.049 (4)0.008 (3)0.000 (3)−0.008 (3)
C130.054 (5)0.056 (4)0.047 (4)0.014 (3)0.010 (3)0.006 (3)
C140.054 (5)0.075 (4)0.042 (3)0.006 (4)−0.003 (3)−0.002 (3)
C150.059 (5)0.065 (4)0.043 (4)−0.005 (3)0.006 (3)−0.009 (3)
N10.060 (4)0.046 (3)0.044 (3)−0.002 (2)−0.006 (2)−0.002 (2)
O10.132 (4)0.061 (3)0.062 (3)−0.015 (3)−0.023 (2)−0.008 (2)
O20.094 (4)0.043 (2)0.054 (2)−0.005 (2)−0.020 (2)0.0071 (18)
O30.085 (4)0.049 (2)0.051 (2)−0.006 (2)−0.015 (2)0.0026 (18)
Cl10.0844 (13)0.0744 (10)0.0654 (9)0.0159 (10)−0.0047 (9)0.0112 (8)

Geometric parameters (Å, °)

C1—C21.386 (6)C8—H8C0.9600
C1—C61.398 (6)C9—O11.212 (5)
C1—N11.410 (5)C9—N11.360 (5)
C2—C31.365 (6)C9—C101.503 (6)
C2—H20.9300C10—C111.379 (6)
C3—C41.371 (6)C10—C151.388 (6)
C3—H30.9300C11—C121.373 (6)
C4—C51.373 (6)C11—H110.9300
C4—H40.9300C12—C131.385 (6)
C5—C61.393 (6)C12—H120.9300
C5—H50.9300C13—C141.367 (6)
C6—C71.476 (6)C13—Cl11.737 (5)
C7—O21.206 (5)C14—C151.370 (6)
C7—O31.323 (5)C14—H140.9300
C8—O31.443 (5)C15—H150.9300
C8—H8A0.9600N1—H10.8600
C8—H8B0.9600
C2—C1—C6119.7 (5)H8B—C8—H8C109.5
C2—C1—N1121.6 (5)O1—C9—N1124.3 (5)
C6—C1—N1118.7 (4)O1—C9—C10121.0 (5)
C3—C2—C1120.1 (5)N1—C9—C10114.7 (5)
C3—C2—H2120.0C11—C10—C15118.2 (5)
C1—C2—H2120.0C11—C10—C9125.8 (5)
C2—C3—C4121.0 (5)C15—C10—C9116.0 (5)
C2—C3—H3119.5C12—C11—C10121.3 (5)
C4—C3—H3119.5C12—C11—H11119.4
C3—C4—C5119.8 (5)C10—C11—H11119.4
C3—C4—H4120.1C11—C12—C13119.1 (5)
C5—C4—H4120.1C11—C12—H12120.5
C4—C5—C6120.5 (5)C13—C12—H12120.5
C4—C5—H5119.7C14—C13—C12120.8 (5)
C6—C5—H5119.7C14—C13—Cl1119.3 (4)
C5—C6—C1118.9 (5)C12—C13—Cl1120.0 (5)
C5—C6—C7119.0 (5)C13—C14—C15119.4 (5)
C1—C6—C7122.2 (5)C13—C14—H14120.3
O2—C7—O3122.3 (5)C15—C14—H14120.3
O2—C7—C6125.1 (5)C14—C15—C10121.3 (5)
O3—C7—C6112.5 (4)C14—C15—H15119.4
O3—C8—H8A109.5C10—C15—H15119.4
O3—C8—H8B109.5C9—N1—C1128.8 (4)
H8A—C8—H8B109.5C9—N1—H1115.6
O3—C8—H8C109.5C1—N1—H1115.6
H8A—C8—H8C109.5C7—O3—C8116.2 (4)
C6—C1—C2—C31.1 (8)N1—C9—C10—C15173.4 (4)
N1—C1—C2—C3179.9 (5)C15—C10—C11—C12−0.6 (8)
C1—C2—C3—C40.6 (9)C9—C10—C11—C12179.3 (5)
C2—C3—C4—C5−1.5 (9)C10—C11—C12—C131.0 (8)
C3—C4—C5—C60.7 (9)C11—C12—C13—C14−1.1 (8)
C4—C5—C6—C11.0 (8)C11—C12—C13—Cl1178.7 (4)
C4—C5—C6—C7−178.8 (5)C12—C13—C14—C150.9 (8)
C2—C1—C6—C5−1.9 (8)Cl1—C13—C14—C15−179.0 (4)
N1—C1—C6—C5179.3 (4)C13—C14—C15—C10−0.5 (8)
C2—C1—C6—C7177.8 (5)C11—C10—C15—C140.3 (8)
N1—C1—C6—C7−1.0 (7)C9—C10—C15—C14−179.6 (5)
C5—C6—C7—O2−179.1 (5)O1—C9—N1—C1−1.1 (9)
C1—C6—C7—O21.1 (8)C10—C9—N1—C1177.8 (4)
C5—C6—C7—O30.9 (7)C2—C1—N1—C94.7 (8)
C1—C6—C7—O3−178.8 (5)C6—C1—N1—C9−176.5 (5)
O1—C9—C10—C11172.5 (5)O2—C7—O3—C8−5.4 (7)
N1—C9—C10—C11−6.5 (7)C6—C7—O3—C8174.6 (4)
O1—C9—C10—C15−7.7 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.212.839 (6)124
N1—H1···O20.861.942.646 (5)138
C3—H3···O2i0.932.583.422 (6)151

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2376).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clark, C. R. (1988). Epilepsia, 29, 198–203. [PubMed]
  • Diouf, O., Bourhim, M., Lambert, D. M., Poupaert, J. H., Stables, J. P. & Vamecq, J. (1997). Biomed. Pharmacother.51, 131–136. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1365. [PMC free article] [PubMed]
  • Khan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687. [PMC free article] [PubMed]
  • Leander, J. D., Robertson, D. W., Clark, C. R., Lawson, R. R. & Rathbun, R. C. (1988). Epilepsia, 29, 83–90. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4630.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography