PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3283.
Published online 2010 November 24. doi:  10.1107/S1600536810048002
PMCID: PMC3011643

7-Meth­oxy-1-{[(Z)-2-nitro­phenyl­imino](phen­yl)meth­yl}-2-naphthol chloro­form monosolvate

Abstract

In the title compound, C24H18N2O4·CHCl3, the phenyl and benzene rings make a dihedral angle of 38.60 (9)° and connect in an orientation almost perpendicular to the naphthalene ring system at dihedral angles of 78.73 (8) and 81.20 (7)°. The mol­ecule has a Z configuration about the C=N bond. In the crystal, mol­ecules are linked by inter­molecular O—H(...)N=C hydrogen bonds between the imino moiety and hy­droxy groups. Inter­molecular C—Cl(...)C inter­actions between Cl atoms of the CHCl3 mol­ecule and C atoms of the naphthalene rings are also present [Cl(...)C = 3.353 (2) and 3.326 (19) Å]. The nitro group and the chloro­form solvent mol­ecule are disordered over two positions with site occupancies of 0.884 (4) and 0.116 (4).

Related literature

For the structures of closely related compounds, see: Mitsui et al. (2008 [triangle]); Nagasawa et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3283-scheme1.jpg

Experimental

Crystal data

  • C24H18N2O4·CHCl3
  • M r = 517.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3283-efi1.jpg
  • a = 13.2672 (6) Å
  • b = 11.2865 (6) Å
  • c = 17.2371 (9) Å
  • β = 109.114 (1)°
  • V = 2438.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 193 K
  • 0.60 × 0.30 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.762, T max = 0.960
  • 38275 measured reflections
  • 5576 independent reflections
  • 4899 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.114
  • S = 1.06
  • 5576 reflections
  • 331 parameters
  • 20 restraints
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048002/pk2281sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048002/pk2281Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

supplementary crystallographic information

Comment

Recently, we have reported the crystal structures of 1-monoaroylated naphthalene homologues having 2-hydroxy group exemplified by (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008), (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010a) and (2-hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone (Nagasawa et al., 2010c). The carbonyl group of these compounds are readily converted to the imino group by imination with aniline derivatives in the presence of TiCl4 and 1,4-diazabicyclo[2.2.2]octane (DABCO). The crystal structures of some of the imine compounds thus obtained have also revealed, e.g., 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010b) and 7-methoxy-1-{[(Z)-2-nitrophenylimino](phenyl)methyl}-2-naphthol, (I) (Nagasawa et al., 2010d). As a part of our ongoing studies on the synthesis and crystal structure analysis of triarylimine compounds, we prepared and analysed the crystal structure of the title compound (II), which is the regioisomer of (I).

An ORTEPIII (Burnett & Johnson, 1996) plot of (II) is shown in Fig. 1. In the molecule of (II), interplanar angles of the least-squares plane of the benzene ring (C18–C23) attached to nitrogen atom (N1) and benzene ring (C12–C17) attached to carbon atom (C11) of imine moiety against the naphthalene ring (C1–C10) are 81.20 (7) and 78.73 (8)°, respectively. The conformation of these groups resembles to that of (I). On the other hand, the interplanar angle between two benzene rings is 38.60 (9)°, which is smaller than that of (I), i.e. 87.15 (6)°. The molecule of (II) has a Z configuration for the imine vector.

In the crystal structure, the molecular packing of (II) is mainly stabilized by intermolecular hydrogen bond and van der Waals interaction. The intermolecular O—H···N hydrogen bond between the hydroxy and the imino groups on the naphthalene ring is observed [H1···N1 = 1.97 Å] (Fig. 2). In addition, one chloroform molecule and two aroylated naphthalene molecules are linked by Cl···C interactions along the c axis [Cl1···C6 = 3.353 (2) Å, Cl2···C5 = 3.326 (19) Å] (Fig. 3).

Experimental

To a solution of (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (0.2 mmol, 56 mg) in chlorobenzene (1 ml), a mixture of 2-nitroaniline (0.22 mmol, 30 mg), TiCl4 (0.33 mmol, 62.4 mg), DABCO (1.32 mmol, 148.0 mg) and chlorobenzene (1 ml) was added by portions at 363 K under nitrogen atmosphere. After the reaction mixture was stirred at 398 K for 1.5 h, the resulting solution was filtrated to remove the solid formed. The solvent was removed under reduced pressure to give crude material. The crude material thus obtained was subjected to crystalization from CHCl3/hexane to give compound (II) as yellow platelet (m.p. 453.0–454.0 K, yield 207 mg, 40%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ; 10.25, (s, 1H), 7.85 (dd, J = 8.6, 1.4 Hz, 1H), 7.70–7.60 (m, 4H), 7.50–7.36 (m, 4H), 7.07–6.98 (m, 3H), 6.81 (dd, J = 8,6, 2.4 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 3.58 (s, 3H); 13C NMR (75 MHz, DMSO-d6) 166.8, 158.6, 154.0, 145.6, 140.6, 138.4, 134.5, 133.0, 131.9, 131.0, 130.4, 129.2, 128.8, 125.2, 124.9, 123.3, 120.8, 115.8, 115.2, 114.9, 102.2, 55.2; IR (KBr): 3427, 1622, 1602, 1515, 1341, 1210; HRMS (m/z): [M + H]+ calcd for C24H19N2O4, 399.1345; found, 399.1371.

Refinement

All H atoms were introduced in calculated positions and treated as riding on their parent atoms with C—H = 1.00 Å (methine), 0.98 Å (methyl) or 0.95 Å (aromatic) with Uiso(H) = 1.2 or 1.5Ueq(C) and O—H = 0.77 Å with Uiso(H) = 1.5Ueq(O).

In the nitro group, N2/N2' and O3/O3' atoms were constrained to make the anisotropic displacement parameters equal. The distances between C23—N2 and C23—N2' were restrained to possess the same value within 0.020 standard deviation. Further restraints were applied to generate similar Uij values within 0.010 standard deviation for the O4 and O4' atoms. N2'—O3' and N2'—O4' bond lengths and the angle were restrained to be similar within 0.020 standard deviation. The nitro groups of the Uij in the direction of the bond were restrained to be equal within 0.010 standard deviation.

In the chloroform molecule, C25/C25', Cl1/Cl1', Cl2/Cl2' and Cl3/Cl3' were constrained to make the anisotropic displacement parameters equal. C25'—Cl1', Cl2' and Cl3' lengths and angles were restrained to be nearly equal within 0.020 standard deviation.

Figures

Fig. 1.
The asymmetric unit of compound (II) showing only the major component and atom labeling. Displacement ellipsoids are drawn at the 50% probability.
Fig. 2.
A partial crystal packing diagram of compound (II) (intermolecular O—H···N hydrogen bonds are shown as dashed lines).
Fig. 3.
A partial crystal packing diagram of compound (II), viewed down the b axis (intermolecular Cl···C interactions are shown as dashed lines).

Crystal data

C24H18N2O4·CHCl3F(000) = 1064
Mr = 517.77Dx = 1.410 Mg m3
Monoclinic, P21/cMelting point = 453.0–454.0 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 13.2672 (6) ÅCell parameters from 30136 reflections
b = 11.2865 (6) Åθ = 3.1–27.4°
c = 17.2371 (9) ŵ = 0.41 mm1
β = 109.114 (1)°T = 193 K
V = 2438.8 (2) Å3Platelet, colorless
Z = 40.60 × 0.30 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer5576 independent reflections
Radiation source: rotating anode4899 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −17→17
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −14→14
Tmin = 0.762, Tmax = 0.960l = −22→22
38275 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.056P)2 + 1.0227P] where P = (Fo2 + 2Fc2)/3
5576 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.50 e Å3
20 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.02083 (8)0.05421 (9)0.26338 (7)0.0340 (2)
H10.0030−0.00700.27360.051*
O20.43281 (10)0.33884 (12)0.13788 (8)0.0460 (3)
N10.07278 (9)0.34133 (10)0.23258 (7)0.0260 (2)
N20.2246 (4)0.5366 (4)0.28500 (16)0.0388 (7)0.884 (4)
O30.1947 (6)0.5115 (6)0.21267 (17)0.0434 (6)0.884 (4)
O40.2636 (3)0.6325 (2)0.31061 (13)0.0886 (10)0.884 (4)
N2'0.227 (4)0.522 (4)0.2773 (13)0.0388 (7)0.116 (4)
O3'0.198 (5)0.518 (6)0.2029 (15)0.0434 (6)0.116 (4)
O4'0.3015 (11)0.5866 (14)0.3138 (9)0.046 (3)*0.116 (4)
C10.14869 (10)0.14673 (11)0.21739 (8)0.0244 (3)
C20.11662 (11)0.04855 (12)0.25110 (8)0.0284 (3)
C30.18235 (13)−0.05341 (12)0.27254 (9)0.0357 (3)
H30.1592−0.12080.29510.043*
C40.27910 (13)−0.05430 (13)0.26056 (9)0.0369 (3)
H40.3223−0.12330.27410.044*
C50.31622 (12)0.04563 (13)0.22843 (8)0.0310 (3)
C60.41893 (13)0.04875 (15)0.21993 (9)0.0391 (3)
H60.4636−0.01900.23480.047*
C70.45494 (12)0.14659 (17)0.19098 (10)0.0408 (4)
H70.52430.14700.18620.049*
C80.38870 (12)0.24785 (14)0.16805 (9)0.0344 (3)
C90.28882 (11)0.24960 (12)0.17571 (8)0.0279 (3)
H90.24540.31820.16040.033*
C100.25066 (11)0.14845 (11)0.20667 (8)0.0255 (3)
C110.07401 (10)0.24982 (11)0.18894 (8)0.0237 (2)
C120.00079 (11)0.25001 (12)0.10229 (8)0.0269 (3)
C13−0.03252 (13)0.14463 (13)0.05936 (9)0.0361 (3)
H13−0.00930.07080.08560.043*
C14−0.09970 (15)0.14713 (16)−0.02191 (10)0.0442 (4)
H14−0.12300.0749−0.05050.053*
C15−0.13261 (14)0.25356 (17)−0.06123 (10)0.0458 (4)
H15−0.17780.2546−0.11690.055*
C16−0.09974 (16)0.35897 (16)−0.01956 (10)0.0473 (4)
H16−0.12250.4324−0.04660.057*
C17−0.03340 (14)0.35763 (13)0.06198 (9)0.0380 (3)
H17−0.01120.43020.09040.046*
C180.13766 (11)0.35278 (12)0.31576 (8)0.0268 (3)
C190.12082 (13)0.27964 (13)0.37559 (9)0.0338 (3)
H190.07360.21410.35950.041*
C200.17225 (14)0.30158 (15)0.45846 (9)0.0399 (4)
H200.16000.25080.49840.048*
C210.24114 (14)0.39668 (15)0.48345 (9)0.0418 (4)
H210.27680.41030.54020.050*
C220.25782 (13)0.47152 (15)0.42562 (9)0.0396 (3)
H220.30430.53760.44240.047*
C230.20625 (12)0.44975 (13)0.34255 (9)0.0312 (3)
C240.36876 (16)0.44165 (17)0.10900 (12)0.0506 (4)
H24A0.40900.49930.08840.076*
H24B0.34950.47690.15420.076*
H24C0.30380.41920.06460.076*
C250.4954 (2)0.2617 (3)0.4771 (2)0.0463 (5)0.884 (4)
H20.46380.29540.51760.056*0.884 (4)
Cl10.51726 (10)0.38033 (11)0.41735 (8)0.0718 (3)0.884 (4)
Cl20.40495 (10)0.15916 (14)0.41674 (8)0.0602 (3)0.884 (4)
Cl30.61723 (8)0.19467 (8)0.53272 (8)0.0620 (3)0.884 (4)
C25'0.5097 (15)0.2618 (19)0.4821 (15)0.0463 (5)0.116 (4)
H2'0.49310.30080.52850.056*0.116 (4)
Cl1'0.4895 (8)0.3540 (8)0.3952 (6)0.0718 (3)0.116 (4)
Cl2'0.4217 (9)0.1492 (13)0.4346 (7)0.0602 (3)0.116 (4)
Cl3'0.6378 (6)0.2033 (7)0.5088 (5)0.0620 (3)0.116 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0372 (5)0.0222 (5)0.0436 (6)−0.0058 (4)0.0145 (4)0.0038 (4)
O20.0392 (6)0.0544 (7)0.0499 (7)−0.0097 (5)0.0220 (5)0.0005 (6)
N10.0309 (6)0.0215 (5)0.0245 (5)0.0023 (4)0.0073 (4)0.0010 (4)
N20.0458 (8)0.0336 (15)0.0359 (8)−0.0118 (11)0.0118 (8)−0.0040 (8)
O30.0662 (10)0.0354 (11)0.0318 (10)−0.0064 (7)0.0205 (12)0.0025 (12)
O40.150 (3)0.0520 (13)0.0558 (11)−0.0610 (16)0.0229 (13)−0.0100 (10)
N2'0.0458 (8)0.0336 (15)0.0359 (8)−0.0118 (11)0.0118 (8)−0.0040 (8)
O3'0.0662 (10)0.0354 (11)0.0318 (10)−0.0064 (7)0.0205 (12)0.0025 (12)
C10.0297 (6)0.0191 (6)0.0222 (6)0.0007 (5)0.0056 (5)−0.0010 (4)
C20.0347 (7)0.0210 (6)0.0273 (6)−0.0021 (5)0.0072 (5)−0.0005 (5)
C30.0485 (8)0.0208 (6)0.0347 (7)0.0024 (6)0.0095 (6)0.0050 (5)
C40.0473 (8)0.0263 (7)0.0326 (7)0.0121 (6)0.0070 (6)0.0028 (6)
C50.0354 (7)0.0314 (7)0.0232 (6)0.0076 (6)0.0054 (5)−0.0026 (5)
C60.0362 (8)0.0468 (9)0.0312 (7)0.0144 (7)0.0070 (6)−0.0022 (6)
C70.0295 (7)0.0583 (10)0.0343 (8)0.0050 (7)0.0099 (6)−0.0063 (7)
C80.0338 (7)0.0427 (8)0.0271 (7)−0.0055 (6)0.0103 (6)−0.0054 (6)
C90.0303 (6)0.0286 (7)0.0239 (6)−0.0006 (5)0.0077 (5)−0.0027 (5)
C100.0300 (6)0.0254 (6)0.0188 (5)0.0018 (5)0.0048 (5)−0.0028 (5)
C110.0263 (6)0.0197 (6)0.0254 (6)−0.0012 (5)0.0090 (5)0.0018 (5)
C120.0285 (6)0.0263 (6)0.0249 (6)0.0002 (5)0.0074 (5)0.0006 (5)
C130.0449 (8)0.0281 (7)0.0309 (7)−0.0040 (6)0.0066 (6)−0.0008 (6)
C140.0521 (10)0.0415 (9)0.0323 (8)−0.0111 (7)0.0047 (7)−0.0083 (7)
C150.0468 (9)0.0559 (10)0.0263 (7)−0.0031 (8)0.0005 (6)0.0005 (7)
C160.0598 (11)0.0414 (9)0.0316 (8)0.0084 (8)0.0024 (7)0.0088 (7)
C170.0505 (9)0.0284 (7)0.0295 (7)0.0035 (6)0.0057 (6)0.0012 (6)
C180.0305 (6)0.0241 (6)0.0245 (6)0.0051 (5)0.0072 (5)−0.0012 (5)
C190.0439 (8)0.0267 (7)0.0307 (7)0.0011 (6)0.0122 (6)0.0006 (5)
C200.0564 (10)0.0363 (8)0.0274 (7)0.0086 (7)0.0141 (7)0.0059 (6)
C210.0511 (9)0.0434 (9)0.0237 (7)0.0078 (7)0.0026 (6)−0.0029 (6)
C220.0409 (8)0.0378 (8)0.0328 (8)−0.0019 (6)0.0023 (6)−0.0059 (6)
C230.0341 (7)0.0294 (7)0.0282 (7)0.0001 (5)0.0077 (5)0.0001 (5)
C240.0516 (10)0.0490 (10)0.0549 (10)−0.0131 (8)0.0225 (8)0.0076 (8)
C250.0548 (12)0.0498 (10)0.0337 (9)−0.0049 (9)0.0137 (9)−0.0057 (7)
Cl10.0736 (6)0.0777 (5)0.0555 (5)−0.0211 (4)0.0093 (4)0.0162 (4)
Cl20.0497 (5)0.0729 (5)0.0506 (6)−0.0098 (4)0.0065 (4)−0.0209 (5)
Cl30.0576 (4)0.0652 (4)0.0514 (5)−0.0027 (3)0.0017 (3)−0.0042 (3)
C25'0.0548 (12)0.0498 (10)0.0337 (9)−0.0049 (9)0.0137 (9)−0.0057 (7)
Cl1'0.0736 (6)0.0777 (5)0.0555 (5)−0.0211 (4)0.0093 (4)0.0162 (4)
Cl2'0.0497 (5)0.0729 (5)0.0506 (6)−0.0098 (4)0.0065 (4)−0.0209 (5)
Cl3'0.0576 (4)0.0652 (4)0.0514 (5)−0.0027 (3)0.0017 (3)−0.0042 (3)

Geometric parameters (Å, °)

O1—C21.3566 (18)C12—C171.399 (2)
O1—H10.7695C13—C141.393 (2)
O2—C81.3664 (19)C13—H130.9500
O2—C241.428 (2)C14—C151.378 (3)
N1—C111.2810 (17)C14—H140.9500
N1—C181.4159 (17)C15—C161.384 (3)
N2—O31.211 (3)C15—H150.9500
N2—O41.219 (3)C16—C171.393 (2)
N2—C231.470 (3)C16—H160.9500
N2'—O3'1.214 (17)C17—H170.9500
N2'—O4'1.230 (18)C18—C191.395 (2)
N2'—C231.481 (17)C18—C231.401 (2)
C1—C21.3814 (18)C19—C201.389 (2)
C1—C101.4242 (18)C19—H190.9500
C1—C111.5026 (17)C20—C211.384 (3)
C2—C31.4178 (19)C20—H200.9500
C3—C41.365 (2)C21—C221.379 (2)
C3—H30.9500C21—H210.9500
C4—C51.414 (2)C22—C231.392 (2)
C4—H40.9500C22—H220.9500
C5—C61.418 (2)C24—H24A0.9800
C5—C101.4249 (18)C24—H24B0.9800
C6—C71.361 (3)C24—H24C0.9800
C6—H60.9500C25—Cl21.745 (3)
C7—C81.417 (2)C25—Cl31.757 (3)
C7—H70.9500C25—Cl11.770 (3)
C8—C91.374 (2)C25—H21.0000
C9—C101.4217 (19)C25'—Cl3'1.739 (19)
C9—H90.9500C25'—Cl2'1.740 (18)
C11—C121.4915 (18)C25'—Cl1'1.770 (19)
C12—C131.394 (2)C25'—H2'1.0000
C2—O1—H1111.6C15—C14—H14119.7
C8—O2—C24117.60 (13)C13—C14—H14119.7
C11—N1—C18123.21 (11)C14—C15—C16119.91 (14)
O3—N2—O4122.5 (4)C14—C15—H15120.0
O3—N2—C23117.9 (3)C16—C15—H15120.0
O4—N2—C23119.5 (2)C15—C16—C17120.12 (15)
O3'—N2'—O4'119 (3)C15—C16—H16119.9
O3'—N2'—C23135 (3)C17—C16—H16119.9
O4'—N2'—C23104.8 (17)C16—C17—C12120.37 (14)
C2—C1—C10120.13 (12)C16—C17—H17119.8
C2—C1—C11119.83 (12)C12—C17—H17119.8
C10—C1—C11120.00 (11)C19—C18—C23117.54 (12)
O1—C2—C1117.46 (12)C19—C18—N1120.21 (12)
O1—C2—C3121.68 (12)C23—C18—N1121.25 (12)
C1—C2—C3120.86 (13)C20—C19—C18120.74 (14)
C4—C3—C2119.67 (13)C20—C19—H19119.6
C4—C3—H3120.2C18—C19—H19119.6
C2—C3—H3120.2C21—C20—C19120.69 (14)
C3—C4—C5121.24 (13)C21—C20—H20119.7
C3—C4—H4119.4C19—C20—H20119.7
C5—C4—H4119.4C22—C21—C20119.75 (14)
C4—C5—C6122.01 (13)C22—C21—H21120.1
C4—C5—C10119.46 (13)C20—C21—H21120.1
C6—C5—C10118.49 (14)C21—C22—C23119.63 (15)
C7—C6—C5121.51 (14)C21—C22—H22120.2
C7—C6—H6119.2C23—C22—H22120.2
C5—C6—H6119.2C22—C23—C18121.62 (14)
C6—C7—C8119.77 (14)C22—C23—N2116.26 (16)
C6—C7—H7120.1C18—C23—N2122.07 (15)
C8—C7—H7120.1C22—C23—N2'122.3 (9)
O2—C8—C9124.92 (14)C18—C23—N2'115.9 (9)
O2—C8—C7114.12 (14)O2—C24—H24A109.5
C9—C8—C7120.96 (14)O2—C24—H24B109.5
C8—C9—C10119.84 (13)H24A—C24—H24B109.5
C8—C9—H9120.1O2—C24—H24C109.5
C10—C9—H9120.1H24A—C24—H24C109.5
C9—C10—C1121.99 (12)H24B—C24—H24C109.5
C9—C10—C5119.41 (13)Cl2—C25—Cl3111.70 (19)
C1—C10—C5118.60 (12)Cl2—C25—Cl1111.47 (19)
N1—C11—C12117.23 (11)Cl3—C25—Cl1110.27 (16)
N1—C11—C1124.51 (12)Cl2—C25—H2107.7
C12—C11—C1118.13 (11)Cl3—C25—H2107.7
C13—C12—C17118.83 (13)Cl1—C25—H2107.7
C13—C12—C11121.31 (12)Cl3'—C25'—Cl2'107.2 (13)
C17—C12—C11119.83 (12)Cl3'—C25'—Cl1'108.2 (13)
C14—C13—C12120.25 (14)Cl2'—C25'—Cl1'98.0 (12)
C14—C13—H13119.9Cl3'—C25'—H2'114.1
C12—C13—H13119.9Cl2'—C25'—H2'114.1
C15—C14—C13120.51 (15)Cl1'—C25'—H2'114.1
C10—C1—C2—O1176.96 (11)C1—C11—C12—C17−151.40 (14)
C11—C1—C2—O1−5.47 (18)C17—C12—C13—C14−0.8 (2)
C10—C1—C2—C3−2.5 (2)C11—C12—C13—C14−179.07 (14)
C11—C1—C2—C3175.10 (12)C12—C13—C14—C151.1 (3)
O1—C2—C3—C4−178.72 (13)C13—C14—C15—C16−0.7 (3)
C1—C2—C3—C40.7 (2)C14—C15—C16—C170.1 (3)
C2—C3—C4—C51.2 (2)C15—C16—C17—C120.2 (3)
C3—C4—C5—C6176.36 (14)C13—C12—C17—C160.2 (2)
C3—C4—C5—C10−1.2 (2)C11—C12—C17—C16178.47 (15)
C4—C5—C6—C7−178.21 (14)C11—N1—C18—C19−66.99 (18)
C10—C5—C6—C7−0.6 (2)C11—N1—C18—C23124.71 (15)
C5—C6—C7—C8−0.5 (2)C23—C18—C19—C20−1.3 (2)
C24—O2—C8—C9−2.7 (2)N1—C18—C19—C20−170.00 (13)
C24—O2—C8—C7176.52 (14)C18—C19—C20—C210.2 (2)
C6—C7—C8—O2−178.28 (14)C19—C20—C21—C220.9 (3)
C6—C7—C8—C91.0 (2)C20—C21—C22—C23−0.9 (2)
O2—C8—C9—C10178.85 (13)C21—C22—C23—C18−0.3 (2)
C7—C8—C9—C10−0.3 (2)C21—C22—C23—N2177.4 (3)
C8—C9—C10—C1178.66 (12)C21—C22—C23—N2'−176 (3)
C8—C9—C10—C5−0.81 (19)C19—C18—C23—C221.4 (2)
C2—C1—C10—C9−177.09 (12)N1—C18—C23—C22169.96 (13)
C11—C1—C10—C95.34 (18)C19—C18—C23—N2−176.2 (3)
C2—C1—C10—C52.38 (18)N1—C18—C23—N2−7.6 (3)
C11—C1—C10—C5−175.19 (11)C19—C18—C23—N2'177 (3)
C4—C5—C10—C9178.91 (12)N1—C18—C23—N2'−14 (3)
C6—C5—C10—C91.27 (19)O3—N2—C23—C22168.9 (6)
C4—C5—C10—C1−0.57 (19)O4—N2—C23—C22−14.9 (6)
C6—C5—C10—C1−178.22 (12)O3—N2—C23—C18−13.4 (8)
C18—N1—C11—C12179.69 (12)O4—N2—C23—C18162.8 (4)
C18—N1—C11—C1−4.4 (2)O3—N2—C23—N2'33 (12)
C2—C1—C11—N194.25 (16)O4—N2—C23—N2'−151 (13)
C10—C1—C11—N1−88.17 (16)O3'—N2'—C23—C22175 (7)
C2—C1—C11—C12−89.89 (15)O4'—N2'—C23—C227(5)
C10—C1—C11—C1287.69 (15)O3'—N2'—C23—C180(9)
N1—C11—C12—C13−156.96 (14)O4'—N2'—C23—C18−168 (2)
C1—C11—C12—C1326.88 (19)O3'—N2'—C23—N2−137 (20)
N1—C11—C12—C1724.77 (19)O4'—N2'—C23—N255 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.771.972.7160 (16)163

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2281).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [PMC free article] [PubMed]
  • Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498. [PMC free article] [PubMed]
  • Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677. [PMC free article] [PubMed]
  • Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o2820–o2821. [PMC free article] [PubMed]
  • Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010d). Acta Cryst. E66, o2738. [PMC free article] [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography