PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3175–o3176.
Published online 2010 November 13. doi:  10.1107/S160053681004626X
PMCID: PMC3011641

The dicyclo­hexyl­amine salt of RG108 (N-phthalyl-l-tryptophan), a potential epigenetic modulator

Abstract

The dicyclo­hexyl­amine salt of RG108 (N-phthalyl-l-tryptophan) co-crystallizes with a water mol­ecule and a disordered mol­ecule of dimethyl­formamide (DMF), viz. dicyclo­hexyl­aminium (S)-2-(1,3-dioxoisoindolin-2-yl)-3-(1H-indol-3-yl)propanoate dimethyl­formamide solvate monohydrate, C12H24N+·C19H13N2O4 ·C3H7NO·H2O. The conformation of the deprotonated compound is constrained by charge-assisted strong hydrogen bonds with the dicyclo­hexyl­aminium ion and a dense hydrogen-bond network involving co-crystallized solvent mol­ecules. The dihedral angle between the fused ring systems in the anion is 58.35 (4)°.

Related literature

For the synthesis and biological evaluation, see: Brueckner et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3175-scheme1.jpg

Experimental

Crystal data

  • C12H24N+·C19H13N2O4 ·C3H7NO·H2O
  • M r = 606.75
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3175-efi1.jpg
  • a = 9.0884 (1) Å
  • b = 15.0206 (3) Å
  • c = 24.4749 (5) Å
  • V = 3341.15 (10) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.67 mm−1
  • T = 293 K
  • 0.55 × 0.04 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Cu) detector
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.967, T max = 0.981
  • 13362 measured reflections
  • 5552 independent reflections
  • 4936 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.094
  • S = 1.01
  • 5552 reflections
  • 409 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2160 Friedel pairs
  • Flack parameter: 0.02 (18)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004626X/vm2050sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004626X/vm2050Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium). Crystals were obtained during work for the Masters thesis of Miss Isabelle Bouhy. The authors thank Bernadette Norberg for her valuable help during the data collection.

supplementary crystallographic information

Comment

RG108 (N-phthalyl-L-tryptophan) is a DNA methyltransferase (DMNT) inhibitor that was discovered by virtual screening (Brueckner et al., 2005). It reactivates tumor suppressor gene expression in tumor cells by DNA demethylation. RG108 also inhibits human tumor cell line proliferation.

Isomer S (C9) of RG108 is obtained starting from L-tryptophan and phthalic anhydride in DMF.

The unprotonated carboxylate group (both C—O bond lenghts are similar with C19—O3 = 1.246 (2) Å and C19—O4 = 1.247 (2) Å) of RG108 is close to the protonated sp3 nitrogen atom (N3) of the amine (intermolecular O···N distances: O3···N3i = 2.774 (2) Å and O4···N3ii = 2.731 (2) Å; i = -1/2 + x,1/2 - y,-z, ii = -1 + x,y,z, see also Table 1).

A water molecule (O5) has co-crystallized and is involved in the stability of the packing as it forms a network of H-bonds connecting the N—H (N2) of the indole ring of RG108 with a carbonyl function (O1) of the phtalimide ring of a symmetry-related molecule and the oxygen atom (O99) of a molecule of DMF solvent (Table 1).

In addition to H-bonding to the water, the extra (disordered) co-crystallized solvent molecule of DMF is thightly packed in a cavity formed by the aromatic heterocycles of RG108 (the phtalimide and the indole rings).

As a consequence of the dense packing (salt bridge, H-bonds and van der Waals interactions), the two aromatic, planar, heterocycles of RG108 are perpendicular (acute angle between the planes defined by the phtalimide and the indole rings = 58.35 (4)°).

Experimental

Synthesis of the compound was made by micro-ave heating of L-tryptophane and phthalic anhydride in DMF by adapting the procedure described by Brueckner et al. (2005).

Crystals were obtained by evaporation at room temperature of a solution in mixture of methylene chloride and methanol (9/1).

Refinement

The two H atoms of the water molecule and the two H atoms on (protonated) nitrogen N5 were located from ΔF Fourier difference maps and their position refined. All other H atoms were placed at idealized positions and allowed to ride on their parent atoms.

Atoms of a DMF molecule were refined isotropically. Disorder has been taken into account by refining two sets of coordinates (0.7 and 0.3 occupancies respectively) for each atom of the DMF molecule. Bond lengths and valence angles were restrained to be similar in both disordered parts.

Figures

Fig. 1.
ORTEP view (with atom numbering) of the title compound. Only selected H atoms have been retained for clarity (on the chiral carbon, on the protonated nitrogen, and H involved in H-bonds). Displacement ellipsoids for non-H atoms are drawn at the 30% probability ...

Crystal data

C12H24N+·C19H13N2O4·C3H7NO·H2OF(000) = 1304.0
Mr = 606.75Dx = 1.206 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 7270 reflections
a = 9.0884 (1) Åθ = 3.5–67.3°
b = 15.0206 (3) ŵ = 0.67 mm1
c = 24.4749 (5) ÅT = 293 K
V = 3341.15 (10) Å3Needle, yellow
Z = 40.55 × 0.04 × 0.03 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Cu) detector5552 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4936 reflections with I > 2σ(I)
mirrorRint = 0.026
Detector resolution: 10.3712 pixels mm-1θmax = 67.4°, θmin = 3.5°
ω scansh = −10→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −15→17
Tmin = 0.967, Tmax = 0.981l = −28→29
13362 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0611P)2 + 0.0400sinθ/λ] where P = 0.33333Fo2 + 0.66667Fc2
S = 1.01(Δ/σ)max < 0.001
5552 reflectionsΔρmax = 0.30 e Å3
409 parametersΔρmin = −0.27 e Å3
8 restraintsAbsolute structure: Flack (1983), 2160 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.28198 (19)0.08359 (12)0.15901 (7)0.0255 (4)
C20.15124 (19)0.04587 (13)0.18771 (7)0.0281 (4)
C30.0899 (2)−0.03769 (15)0.18579 (8)0.0371 (4)
H30.1306−0.08280.16460.044*
C4−0.0364 (2)−0.05175 (17)0.21717 (10)0.0471 (6)
H4−0.0803−0.10770.21710.056*
C5−0.0976 (2)0.01558 (18)0.24826 (9)0.0466 (6)
H5−0.18200.00410.26860.056*
C6−0.0356 (2)0.09991 (17)0.24977 (9)0.0409 (5)
H6−0.07740.14550.27030.049*
C70.09121 (18)0.11355 (14)0.21952 (7)0.0293 (4)
C80.18476 (18)0.19374 (14)0.21386 (7)0.0276 (4)
C90.40737 (17)0.23259 (12)0.15742 (7)0.0245 (4)
H90.38680.29000.17490.029*
C100.56294 (17)0.20499 (14)0.17540 (7)0.0283 (4)
H10A0.58400.14630.16090.034*
H10B0.63340.24610.15960.034*
C110.58403 (18)0.20322 (13)0.23613 (8)0.0300 (4)
C120.6295 (2)0.27212 (15)0.26820 (8)0.0382 (5)
H120.65140.32890.25530.046*
C130.5969 (2)0.15904 (15)0.32564 (8)0.0365 (4)
C140.5908 (2)0.10309 (17)0.37118 (9)0.0444 (5)
H140.61460.12380.40590.053*
C150.5484 (2)0.01611 (17)0.36273 (9)0.0464 (6)
H150.5429−0.02260.39230.056*
C160.5136 (2)−0.01489 (15)0.31049 (9)0.0407 (5)
H160.4854−0.07390.30590.049*
C170.52024 (19)0.04037 (14)0.26543 (8)0.0329 (4)
H170.49710.01880.23090.039*
C180.56222 (18)0.12900 (14)0.27259 (7)0.0297 (4)
C190.39345 (18)0.24740 (12)0.09508 (7)0.0251 (4)
C201.0315 (2)0.06650 (15)0.02751 (8)0.0362 (4)
H20A1.13330.07260.03890.043*
H20B1.02640.0797−0.01120.043*
C210.9818 (3)−0.02937 (15)0.03696 (10)0.0466 (5)
H21A1.0377−0.06880.01340.056*
H21B1.0017−0.04600.07450.056*
C220.8190 (3)−0.04061 (16)0.02532 (10)0.0460 (5)
H22A0.7894−0.10110.03380.055*
H22B0.8004−0.0301−0.01320.055*
C230.7290 (2)0.02426 (15)0.05937 (9)0.0417 (5)
H23A0.62540.01690.05100.050*
H23B0.74310.01140.09790.050*
C240.7748 (2)0.11973 (14)0.04766 (8)0.0325 (4)
H24A0.75390.13380.00980.039*
H24B0.71790.15980.07040.039*
C250.93764 (19)0.13371 (13)0.05872 (7)0.0277 (4)
H250.95590.12670.09790.033*
C260.90346 (18)0.30325 (13)0.06517 (7)0.0265 (4)
H260.79800.29570.05820.032*
C270.9557 (2)0.38741 (14)0.03688 (8)0.0350 (4)
H27A0.93520.3831−0.00190.042*
H27B1.06130.39310.04140.042*
C280.8803 (3)0.46978 (15)0.06000 (9)0.0430 (5)
H28A0.91980.52250.04250.052*
H28B0.77580.46710.05210.052*
C290.9029 (2)0.47659 (15)0.12145 (9)0.0424 (5)
H29A1.00630.48620.12930.051*
H29B0.84800.52700.13560.051*
C300.8515 (2)0.39192 (16)0.14926 (9)0.0409 (5)
H30A0.74610.38570.14430.049*
H30B0.87060.39630.18820.049*
C310.92799 (19)0.30959 (14)0.12677 (7)0.0317 (4)
H31A0.88920.25680.14450.038*
H31B1.03260.31290.13440.038*
N10.29621 (15)0.17046 (10)0.17706 (6)0.0251 (3)
N20.6388 (2)0.24668 (12)0.32209 (7)0.0429 (4)
H20.66610.27990.34890.051*
N30.98457 (16)0.22521 (11)0.04155 (6)0.0269 (3)
O10.36330 (14)0.04770 (9)0.12646 (6)0.0342 (3)
O20.17295 (15)0.26576 (10)0.23543 (6)0.0374 (3)
O30.50423 (13)0.27765 (10)0.07154 (5)0.0331 (3)
O40.27256 (13)0.23090 (11)0.07320 (6)0.0383 (3)
O50.1772 (2)0.13211 (12)0.59148 (8)0.0539 (4)
O990.0737 (4)0.1983 (3)0.49899 (14)0.0750 (9)*0.70
N990.1552 (5)0.2310 (3)0.41554 (16)0.0510 (11)*0.70
C880.1620 (4)0.2142 (3)0.46712 (15)0.0517 (8)*0.70
H880.25710.21530.48120.062*0.70
C960.2644 (6)0.2521 (4)0.3781 (2)0.0796 (13)*0.70
H96A0.22110.26100.34280.119*0.70
H96B0.33420.20420.37620.119*0.70
H96C0.31360.30560.38940.119*0.70
C97−0.0037 (4)0.2278 (3)0.39149 (17)0.0656 (10)*0.70
H97A−0.00040.24110.35310.098*0.70
H97B−0.06420.27090.40980.098*0.70
H97C−0.04430.16940.39680.098*0.70
O99B0.0109 (6)0.2045 (4)0.5007 (2)0.0357 (11)*0.30
N99B0.1149 (8)0.2235 (5)0.4188 (3)0.0317 (18)*0.30
C88B0.0171 (12)0.2275 (8)0.4510 (4)0.071 (3)*0.30
H88B−0.06960.25160.43730.085*0.30
C96B0.2691 (11)0.2064 (7)0.4520 (4)0.067 (2)*0.30
H96D0.34910.20290.42650.100*0.30
H96E0.26240.15170.47210.100*0.30
H96F0.28600.25480.47690.100*0.30
C97B0.1649 (19)0.2484 (12)0.3692 (7)0.112 (5)*0.30
H97D0.26120.22380.36330.168*0.30
H97E0.17010.31220.36740.168*0.30
H97F0.09920.22700.34140.168*0.30
H5B0.133 (4)0.145 (3)0.5631 (15)0.072 (11)*
H5C0.150 (4)0.076 (3)0.5979 (13)0.072 (10)*
HN3B1.077 (3)0.2319 (16)0.0481 (9)0.033 (6)*
HN3A0.984 (3)0.2272 (17)0.0012 (11)0.046 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0274 (8)0.0247 (9)0.0245 (8)−0.0008 (8)−0.0019 (7)−0.0009 (7)
C20.0286 (8)0.0303 (10)0.0254 (8)−0.0058 (8)−0.0033 (7)0.0066 (7)
C30.0407 (10)0.0347 (11)0.0358 (10)−0.0087 (9)−0.0072 (8)0.0085 (8)
C40.0443 (11)0.0470 (14)0.0499 (12)−0.0198 (11)−0.0082 (10)0.0180 (11)
C50.0300 (9)0.0640 (16)0.0456 (12)−0.0128 (11)0.0021 (8)0.0228 (12)
C60.0299 (9)0.0547 (14)0.0382 (11)−0.0004 (10)0.0050 (8)0.0111 (10)
C70.0259 (8)0.0376 (11)0.0242 (9)−0.0010 (8)−0.0007 (7)0.0052 (8)
C80.0257 (8)0.0340 (10)0.0231 (8)0.0020 (8)0.0004 (6)0.0010 (7)
C90.0256 (8)0.0243 (9)0.0235 (8)−0.0044 (7)0.0028 (6)0.0002 (7)
C100.0239 (7)0.0330 (10)0.0279 (8)−0.0048 (8)−0.0010 (7)0.0047 (8)
C110.0274 (8)0.0323 (10)0.0303 (9)−0.0040 (8)−0.0033 (7)0.0067 (8)
C120.0496 (11)0.0329 (11)0.0320 (10)−0.0066 (9)−0.0117 (9)0.0063 (8)
C130.0405 (9)0.0386 (12)0.0305 (9)−0.0040 (9)−0.0032 (8)0.0047 (8)
C140.0525 (11)0.0517 (14)0.0291 (10)−0.0029 (11)−0.0046 (9)0.0090 (10)
C150.0509 (12)0.0486 (14)0.0397 (11)−0.0048 (11)−0.0007 (9)0.0212 (10)
C160.0394 (10)0.0349 (12)0.0479 (12)−0.0061 (9)−0.0029 (9)0.0128 (9)
C170.0296 (8)0.0345 (11)0.0345 (10)−0.0036 (8)−0.0009 (7)0.0025 (8)
C180.0266 (8)0.0331 (11)0.0293 (9)−0.0016 (8)−0.0010 (7)0.0037 (8)
C190.0260 (8)0.0242 (9)0.0251 (8)0.0023 (7)−0.0001 (6)0.0000 (7)
C200.0339 (9)0.0391 (12)0.0355 (10)0.0120 (9)−0.0027 (8)−0.0033 (9)
C210.0586 (13)0.0366 (13)0.0445 (12)0.0161 (11)−0.0031 (10)−0.0029 (10)
C220.0613 (13)0.0301 (11)0.0465 (12)−0.0004 (11)0.0006 (10)0.0005 (9)
C230.0467 (11)0.0334 (12)0.0450 (12)−0.0015 (10)0.0041 (9)0.0059 (9)
C240.0297 (8)0.0311 (11)0.0368 (10)0.0033 (8)0.0038 (7)0.0022 (8)
C250.0309 (9)0.0303 (10)0.0219 (8)0.0057 (8)−0.0011 (7)0.0008 (7)
C260.0237 (7)0.0289 (9)0.0268 (8)0.0011 (7)−0.0005 (6)−0.0033 (7)
C270.0409 (10)0.0352 (11)0.0290 (9)−0.0018 (9)−0.0006 (8)0.0002 (8)
C280.0516 (12)0.0326 (11)0.0448 (11)−0.0035 (10)−0.0019 (9)−0.0012 (9)
C290.0456 (10)0.0364 (12)0.0452 (11)−0.0059 (10)0.0020 (9)−0.0125 (10)
C300.0449 (10)0.0424 (12)0.0355 (11)−0.0055 (10)0.0090 (9)−0.0106 (9)
C310.0295 (8)0.0382 (11)0.0274 (9)−0.0010 (8)0.0012 (7)−0.0028 (8)
N10.0267 (7)0.0236 (8)0.0251 (7)−0.0033 (6)0.0035 (6)−0.0021 (6)
N20.0647 (11)0.0360 (10)0.0280 (8)−0.0077 (9)−0.0123 (8)0.0022 (7)
N30.0224 (7)0.0340 (9)0.0244 (8)0.0040 (6)−0.0023 (6)−0.0013 (6)
O10.0384 (6)0.0295 (7)0.0346 (7)−0.0011 (6)0.0070 (6)−0.0068 (6)
O20.0414 (7)0.0334 (8)0.0374 (7)0.0041 (6)0.0071 (6)−0.0081 (6)
O30.0316 (6)0.0428 (8)0.0247 (6)−0.0066 (6)0.0013 (5)0.0054 (6)
O40.0276 (6)0.0523 (9)0.0349 (7)−0.0029 (6)−0.0065 (5)0.0039 (6)
O50.0860 (13)0.0317 (9)0.0442 (10)0.0013 (9)0.0080 (9)0.0005 (7)

Geometric parameters (Å, °)

C1—O11.213 (2)C23—H23B0.9700
C1—N11.384 (2)C24—C251.519 (3)
C1—C21.492 (3)C24—H24A0.9700
C2—C31.374 (3)C24—H24B0.9700
C2—C71.392 (3)C25—N31.499 (3)
C3—C41.397 (3)C25—H250.9800
C3—H30.9300C26—N31.500 (2)
C4—C51.383 (4)C26—C271.517 (3)
C4—H40.9300C26—C311.527 (2)
C5—C61.387 (4)C26—H260.9800
C5—H50.9300C27—C281.524 (3)
C6—C71.385 (3)C27—H27A0.9700
C6—H60.9300C27—H27B0.9700
C7—C81.481 (3)C28—C291.522 (3)
C8—O21.209 (2)C28—H28A0.9700
C8—N11.400 (2)C28—H28B0.9700
C9—N11.457 (2)C29—C301.516 (3)
C9—C101.538 (2)C29—H29A0.9700
C9—C191.547 (2)C29—H29B0.9700
C9—H90.9800C30—C311.522 (3)
C10—C111.499 (3)C30—H30A0.9700
C10—H10A0.9700C30—H30B0.9700
C10—H10B0.9700C31—H31A0.9700
C11—C121.363 (3)C31—H31B0.9700
C11—C181.442 (3)N2—H20.8600
C12—N21.376 (3)N3—HN3B0.86 (2)
C12—H120.9300N3—HN3A0.99 (3)
C13—N21.373 (3)O5—H5B0.82 (4)
C13—C141.397 (3)O5—H5C0.89 (4)
C13—C181.410 (3)O99—C881.145 (5)
C14—C151.378 (4)N99—C881.289 (5)
C14—H140.9300N99—C961.387 (7)
C15—C161.397 (3)N99—C971.561 (6)
C15—H150.9300C88—H880.9300
C16—C171.381 (3)C96—H96A0.9600
C16—H160.9300C96—H96B0.9600
C17—C181.396 (3)C96—H96C0.9600
C17—H170.9300C97—H97A0.9600
C19—O31.246 (2)C97—H97B0.9600
C19—O41.247 (2)C97—H97C0.9600
C20—C251.527 (3)O99B—C88B1.266 (12)
C20—C211.527 (3)N99B—C88B1.189 (13)
C20—H20A0.9700N99B—C97B1.350 (18)
C20—H20B0.9700N99B—C96B1.640 (12)
C21—C221.517 (3)C88B—H88B0.9300
C21—H21A0.9700C96B—H96D0.9600
C21—H21B0.9700C96B—H96E0.9600
C22—C231.521 (3)C96B—H96F0.9600
C22—H22A0.9700C97B—H97D0.9600
C22—H22B0.9700C97B—H97E0.9600
C23—C241.521 (3)C97B—H97F0.9600
C23—H23A0.9700
O1—C1—N1124.88 (17)H24A—C24—H24B108.0
O1—C1—C2128.72 (18)N3—C25—C24110.73 (15)
N1—C1—C2106.39 (15)N3—C25—C20107.89 (15)
C3—C2—C7121.81 (17)C24—C25—C20111.34 (16)
C3—C2—C1130.83 (19)N3—C25—H25108.9
C7—C2—C1107.35 (16)C24—C25—H25108.9
C2—C3—C4116.9 (2)C20—C25—H25108.9
C2—C3—H3121.5N3—C26—C27108.74 (14)
C4—C3—H3121.5N3—C26—C31110.93 (15)
C5—C4—C3121.5 (2)C27—C26—C31110.66 (16)
C5—C4—H4119.2N3—C26—H26108.8
C3—C4—H4119.2C27—C26—H26108.8
C4—C5—C6121.27 (19)C31—C26—H26108.8
C4—C5—H5119.4C26—C27—C28111.49 (16)
C6—C5—H5119.4C26—C27—H27A109.3
C7—C6—C5117.3 (2)C28—C27—H27A109.3
C7—C6—H6121.3C26—C27—H27B109.3
C5—C6—H6121.3C28—C27—H27B109.3
C6—C7—C2121.15 (19)H27A—C27—H27B108.0
C6—C7—C8130.40 (19)C29—C28—C27111.16 (18)
C2—C7—C8108.46 (15)C29—C28—H28A109.4
O2—C8—N1124.68 (17)C27—C28—H28A109.4
O2—C8—C7129.50 (17)C29—C28—H28B109.4
N1—C8—C7105.82 (16)C27—C28—H28B109.4
N1—C9—C10111.75 (15)H28A—C28—H28B108.0
N1—C9—C19111.15 (14)C30—C29—C28110.23 (18)
C10—C9—C19113.34 (13)C30—C29—H29A109.6
N1—C9—H9106.7C28—C29—H29A109.6
C10—C9—H9106.7C30—C29—H29B109.6
C19—C9—H9106.7C28—C29—H29B109.6
C11—C10—C9113.96 (14)H29A—C29—H29B108.1
C11—C10—H10A108.8C29—C30—C31112.23 (16)
C9—C10—H10A108.8C29—C30—H30A109.2
C11—C10—H10B108.8C31—C30—H30A109.2
C9—C10—H10B108.8C29—C30—H30B109.2
H10A—C10—H10B107.7C31—C30—H30B109.2
C12—C11—C18105.80 (16)H30A—C30—H30B107.9
C12—C11—C10126.61 (18)C30—C31—C26109.94 (16)
C18—C11—C10127.58 (18)C30—C31—H31A109.7
C11—C12—N2111.09 (18)C26—C31—H31A109.7
C11—C12—H12124.5C30—C31—H31B109.7
N2—C12—H12124.5C26—C31—H31B109.7
N2—C13—C14129.6 (2)H31A—C31—H31B108.2
N2—C13—C18108.08 (17)C1—N1—C8111.92 (15)
C14—C13—C18122.2 (2)C1—N1—C9124.30 (14)
C15—C14—C13117.5 (2)C8—N1—C9123.65 (15)
C15—C14—H14121.3C13—N2—C12108.05 (17)
C13—C14—H14121.3C13—N2—H2126.0
C14—C15—C16121.1 (2)C12—N2—H2126.0
C14—C15—H15119.4C25—N3—C26117.94 (14)
C16—C15—H15119.4C25—N3—HN3B109.4 (16)
C17—C16—C15121.4 (2)C26—N3—HN3B108.4 (16)
C17—C16—H16119.3C25—N3—HN3A107.8 (15)
C15—C16—H16119.3C26—N3—HN3A110.9 (15)
C16—C17—C18118.99 (19)HN3B—N3—HN3A101 (2)
C16—C17—H17120.5H5B—O5—H5C103 (3)
C18—C17—H17120.5C88—N99—C96131.1 (4)
C17—C18—C13118.79 (18)C88—N99—C97114.1 (4)
C17—C18—C11134.22 (18)C96—N99—C97114.8 (4)
C13—C18—C11106.97 (17)O99—C88—N99132.4 (4)
O3—C19—O4125.87 (17)O99—C88—H88113.8
O3—C19—C9116.25 (15)N99—C88—H88113.8
O4—C19—C9117.84 (15)N99—C96—H96A109.5
C25—C20—C21112.50 (17)N99—C96—H96B109.5
C25—C20—H20A109.1H96A—C96—H96B109.5
C21—C20—H20A109.1N99—C96—H96C109.5
C25—C20—H20B109.1H96A—C96—H96C109.5
C21—C20—H20B109.1H96B—C96—H96C109.5
H20A—C20—H20B107.8N99—C97—H97A109.5
C22—C21—C20111.41 (18)N99—C97—H97B109.5
C22—C21—H21A109.3H97A—C97—H97B109.5
C20—C21—H21A109.3N99—C97—H97C109.5
C22—C21—H21B109.3H97A—C97—H97C109.5
C20—C21—H21B109.3H97B—C97—H97C109.5
H21A—C21—H21B108.0C88B—N99B—C97B146.5 (11)
C21—C22—C23110.53 (19)C88B—N99B—C96B108.5 (8)
C21—C22—H22A109.5C97B—N99B—C96B101.6 (10)
C23—C22—H22A109.5N99B—C88B—O99B131.1 (10)
C21—C22—H22B109.5N99B—C88B—H88B114.5
C23—C22—H22B109.5O99B—C88B—H88B114.5
H22A—C22—H22B108.1N99B—C96B—H96D109.5
C24—C23—C22110.70 (17)N99B—C96B—H96E109.5
C24—C23—H23A109.5H96D—C96B—H96E109.5
C22—C23—H23A109.5N99B—C96B—H96F109.5
C24—C23—H23B109.5H96D—C96B—H96F109.5
C22—C23—H23B109.5H96E—C96B—H96F109.5
H23A—C23—H23B108.1N99B—C97B—H97D109.5
C25—C24—C23111.33 (16)N99B—C97B—H97E109.5
C25—C24—H24A109.4H97D—C97B—H97E109.5
C23—C24—H24A109.4N99B—C97B—H97F109.5
C25—C24—H24B109.4H97D—C97B—H97F109.5
C23—C24—H24B109.4H97E—C97B—H97F109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—HN3B···O4i0.86 (3)1.88 (3)2.7309 (19)169 (2)
N2—H2···O5ii0.861.972.813 (3)165
N3—HN3A···O3iii0.99 (3)1.79 (3)2.7740 (19)173 (2)
O5—H5B···O990.83 (4)1.84 (4)2.645 (4)164 (4)
O5—H5C···O1iv0.89 (4)1.99 (4)2.857 (2)164 (3)

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z; (iv) −x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2050).

References

  • Brueckner, B., Boy, R. G., Siedlecki, P., Munsch, T., Kliem, H. C., Zielenkiewicz, P., Suhai, S., Wiessler, M. & Lyko, F. (2005). Cancer Res.65, 6305–6311. [PubMed]
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography