PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3339–o3340.
Published online 2010 November 27. doi:  10.1107/S1600536810049093
PMCID: PMC3011640

2-Amino­pyridinium 1-phenyl­cyclo­propane-1-carboxyl­ate

Abstract

In the title salt, C5H7N2 +·C10H9O2 , 2-amino­pyridine and 1-phenyl­cyclo­propane-1-carb­oxy­lic acid crystallize together, forming a 2-amino­pyridinium–carboxyl­ate supra­molecular heterosynthon involving two N—H(...)O hydrogen bonds, which in turn dimerizes to form a four-component supra­molecular unit also sustained by N—H(...)O hydrogen bonding. A C—H(...)π inter­action between a pyridine C—H group and the centroid of the phenyl ring of the anion further stabilizes the four-component supra­molecular unit. The overall crystal packing also features C—H(...)O inter­actions.

Related literature

For structural studies of 2-amino­pyridine, see: Chao et al. (1975 [triangle]). For recent mol­ecular co-crystals and salts of 2-amino­pyridine, see: Sivaramkumar et al. (2010 [triangle]); Chitra et al. (2008 [triangle]); Quah et al. (2008 [triangle]); Xie (2007 [triangle]); Li et al. (2006 [triangle], 2007 [triangle]); Yang & Qu (2006 [triangle]); Bis & Zaworotko (2005 [triangle]). For the use of 2-amino­pyridine in the synthesis of pharmaceuticals, see: O’Neil (2006 [triangle]). For our previous work on screening for molecular co-crystals and salts, see: He et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3339-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C10H9O2
  • M r = 256.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3339-efi1.jpg
  • a = 8.6147 (17) Å
  • b = 9.0555 (18) Å
  • c = 9.2346 (18) Å
  • α = 75.56 (3)°
  • β = 87.72 (3)°
  • γ = 72.79 (3)°
  • V = 666.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 110 K
  • 0.33 × 0.33 × 0.22 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.972, T max = 0.981
  • 9557 measured reflections
  • 3271 independent reflections
  • 3103 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.145
  • S = 1.12
  • 3271 reflections
  • 184 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049093/ng5075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049093/ng5075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

supplementary crystallographic information

Comment

2-Aminopyridine is one of the three positional isomers of aminopyridine and is widely used as an intermediate in the synthesis of pharmaceuticals (O'Neil, 2006). We have chosen 2-aminopyridine and 1-phenylcyclopropane-1-carboxylic acid for cocrystallization experiment as an extension work to our previous study on screening for molecular cocrystals and salts (He et al., 2009).

The crystal structure of the title salt contains each one molecule of 2-aminopyridine and 1-phenylcyclopropane-1-carboxylic acid in the asymmetric unit (Fig. 2). Bis and Zaworotko revealed four types of two-point recognition possibilities in molecular complexes formed between 2-aminopyridine and carboxylic acids (Bis & Zaworotko, 2005). They have distinguished the type I–IV (Fig 1) synthons depending on whether the interacting complementary functional groups are the same or different. Type I involves formation of the carboxylic acid homosynthon; type II involves formation of the 2-aminopyridine homosynthon; type III and IV involve formation of 2-aminopyridine-carboxylic acid and 2-aminopyridinium-carboxylate supramolecular heterosynthons, respectively.

The title salt features type IV heterosynthon, where the 2-aminopyridinium ion forms a heterosynthon with the carboxylate group of the 1-phenylcyclopropane-1-carboxylate via two N–H···O (N···O = 2.6255 (15) and 2.7903 (15) Å) hydrogen bonds. Two such heterosynthons related by an inversion center dimerizes to form a four-component supramolecular unit sustained by N–H···O (N···O = 2.8230 (16) Å) hydrogen bonding (Fig. 3). The four-component supramolecular unit is further stabilized by a C–H···π interaction involving the 2-C–H of the pyridine ring and centroid of the phenyl ring of the carboxylate: C···Cg1 (1 - x,1 - y,1 - z) = 3.5464 (15) Å, where Cg1 denotes the centroid of the ring C10–C15 of 1-phenylcyclopropane-1-carboxylate (Fig. 4). Two prominent C–H···O interactions that involve the 11-C—H and 12-C—H of the phenyl ring of the 1-phenylcyclopropane-1-carboxylate and O1 of the same molecule at (-x + 1, -y + 1, -z + 2) and (x + 1, y, z), respectively, stabilize the overall crystal structure.

Experimental

0.1883 g (2 mmol) of 2-aminopyridine (Acros Organic, 99+%)) and 0.3246 g (2 mmol) of 1-phenylcyclopropane-1-carboxylic acid (Sigma, 97%) and were dissolved into 3 ml of ethyl acetate (Fisher Scientific, HPLC). Solution was then filtered through a 0.22µm PTFE filter. Filtered solution was finally sealed with Parafilm? and small holes were made to allow solvent to slowly evaporate. The block-shaped crystal (0.33 × 0.33 × 0.22 mm) suitable for single-crystal X-ray diffraction was collected after one day.

Refinement

H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles. Other H atoms were positioned geometrically and refined using a riding model.

Figures

Fig. 1.
The molecular structures of 2-aminopyridinium ion and 1-phenylcyclopropane-1-carboxylate, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Supramolecular synthons: I. a carboxylic acid homosynthon; II. 2-aminopyridine homosynthon; III. 2-aminopyridine-carboxylic acid heterosynthon; IV. 2-aminopyridine-carboxylate heterosynthon.
Fig. 3.
A four-component supramolecular unit that features heterosynthon IV and a C–H···π interaction in the crystal structure of the title salt.
Fig. 4.
Part of the crystal structure of the title salt, showing the arrangement of the four-component supramolecular units which are stabilized by C–H···O interactions.

Crystal data

C5H7N2+·C10H9O2Z = 2
Mr = 256.30F(000) = 272
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6147 (17) ÅCell parameters from 1840 reflections
b = 9.0555 (18) Åθ = 2.3–30.9°
c = 9.2346 (18) ŵ = 0.09 mm1
α = 75.56 (3)°T = 110 K
β = 87.72 (3)°Block, colorless
γ = 72.79 (3)°0.33 × 0.33 × 0.22 mm
V = 666.0 (2) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer3271 independent reflections
Radiation source: fine-focus sealed tube3103 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (Blessing, 1995)h = −11→11
Tmin = 0.972, Tmax = 0.981k = −11→11
9557 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0812P)2 + 0.1565P] where P = (Fo2 + 2Fc2)/3
3271 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.24208 (10)0.61579 (11)0.84154 (10)0.0282 (2)
N10.14380 (12)0.42572 (12)0.71820 (11)0.0242 (2)
O20.43518 (12)0.64375 (12)0.67744 (10)0.0338 (2)
N20.35609 (13)0.42026 (15)0.55735 (13)0.0309 (3)
C10.22273 (14)0.37913 (14)0.60017 (13)0.0238 (2)
C60.41282 (13)0.76759 (14)0.87938 (13)0.0234 (2)
C30.02113 (16)0.25068 (15)0.57653 (14)0.0290 (3)
H3−0.02310.19180.52630.035*
C90.36026 (13)0.66849 (14)0.79228 (13)0.0235 (2)
C110.71088 (14)0.73844 (14)0.88508 (13)0.0246 (2)
H110.72590.64080.95890.029*
C100.55559 (14)0.82560 (14)0.82490 (12)0.0230 (2)
C120.84456 (14)0.79240 (15)0.83861 (13)0.0268 (3)
H120.94990.73180.88060.032*
C20.15868 (15)0.28868 (14)0.52668 (13)0.0257 (3)
H20.21140.25480.44320.031*
C50.00793 (15)0.38539 (15)0.76921 (13)0.0269 (3)
H5−0.04310.41900.85340.032*
C140.67030 (17)1.02220 (15)0.66824 (15)0.0319 (3)
H140.65601.11900.59340.038*
C150.53697 (15)0.96742 (15)0.71553 (14)0.0292 (3)
H150.43201.02770.67250.035*
C4−0.05647 (16)0.29794 (16)0.70228 (14)0.0304 (3)
H4−0.15090.26940.73900.036*
C70.39043 (16)0.72252 (17)1.04712 (14)0.0321 (3)
H7A0.34740.63101.08780.038*
H7B0.47120.73401.11350.038*
C130.82364 (15)0.93486 (15)0.73082 (14)0.0288 (3)
H130.91450.97250.69990.035*
C80.27730 (15)0.87131 (17)0.95326 (15)0.0332 (3)
H8A0.28830.97460.96170.040*
H8B0.16450.87160.93590.040*
H60.407 (2)0.393 (2)0.475 (2)0.038 (4)*
H90.389 (2)0.492 (2)0.600 (2)0.041 (5)*
H10.185 (2)0.496 (2)0.762 (2)0.044 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0256 (4)0.0351 (5)0.0315 (5)−0.0151 (3)0.0083 (3)−0.0157 (4)
N10.0263 (5)0.0268 (5)0.0226 (5)−0.0103 (4)0.0047 (4)−0.0094 (4)
O20.0381 (5)0.0433 (5)0.0329 (5)−0.0232 (4)0.0150 (4)−0.0210 (4)
N20.0292 (5)0.0413 (6)0.0326 (6)−0.0188 (5)0.0110 (4)−0.0193 (5)
C10.0240 (5)0.0242 (5)0.0238 (5)−0.0080 (4)0.0027 (4)−0.0063 (4)
C60.0212 (5)0.0272 (6)0.0249 (5)−0.0082 (4)0.0047 (4)−0.0113 (4)
C30.0351 (6)0.0295 (6)0.0286 (6)−0.0172 (5)0.0054 (5)−0.0097 (5)
C90.0213 (5)0.0257 (5)0.0256 (5)−0.0078 (4)0.0033 (4)−0.0093 (4)
C110.0257 (6)0.0256 (5)0.0247 (5)−0.0100 (4)0.0033 (4)−0.0078 (4)
C100.0238 (5)0.0249 (5)0.0244 (5)−0.0094 (4)0.0043 (4)−0.0113 (4)
C120.0242 (5)0.0316 (6)0.0292 (6)−0.0113 (4)0.0030 (4)−0.0123 (5)
C20.0302 (6)0.0265 (6)0.0234 (5)−0.0111 (4)0.0047 (4)−0.0092 (4)
C50.0292 (6)0.0286 (6)0.0245 (5)−0.0105 (5)0.0073 (4)−0.0082 (4)
C140.0403 (7)0.0248 (6)0.0318 (6)−0.0137 (5)0.0059 (5)−0.0051 (5)
C150.0287 (6)0.0260 (6)0.0321 (6)−0.0074 (5)0.0009 (5)−0.0065 (5)
C40.0323 (6)0.0324 (6)0.0314 (6)−0.0169 (5)0.0089 (5)−0.0090 (5)
C70.0325 (6)0.0468 (8)0.0260 (6)−0.0199 (6)0.0090 (5)−0.0167 (5)
C130.0326 (6)0.0318 (6)0.0308 (6)−0.0182 (5)0.0092 (5)−0.0144 (5)
C80.0276 (6)0.0372 (7)0.0429 (7)−0.0110 (5)0.0115 (5)−0.0242 (6)

Geometric parameters (Å, °)

O1—C91.2702 (14)C11—H110.9500
N1—C11.3524 (15)C10—C151.3927 (17)
N1—C51.3597 (15)C12—C131.3870 (18)
N1—H10.983 (19)C12—H120.9500
O2—C91.2530 (15)C2—H20.9500
N2—C11.3261 (15)C5—C41.3595 (18)
N2—H60.913 (18)C5—H50.9500
N2—H90.949 (19)C14—C131.385 (2)
C1—C21.4178 (17)C14—C151.3947 (17)
C6—C101.4977 (15)C14—H140.9500
C6—C91.5122 (16)C15—H150.9500
C6—C71.5201 (17)C4—H40.9500
C6—C81.5224 (17)C7—C81.491 (2)
C3—C21.3614 (16)C7—H7A0.9900
C3—C41.4125 (18)C7—H7B0.9900
C3—H30.9500C13—H130.9500
C11—C101.3918 (17)C8—H8A0.9900
C11—C121.3922 (16)C8—H8B0.9900
C1—N1—C5121.81 (10)C3—C2—C1119.58 (11)
C1—N1—H1117.1 (11)C3—C2—H2120.2
C5—N1—H1121.0 (11)C1—C2—H2120.2
C1—N2—H6118.9 (11)C4—C5—N1121.41 (11)
C1—N2—H9120.8 (11)C4—C5—H5119.3
H6—N2—H9119.5 (15)N1—C5—H5119.3
N2—C1—N1118.89 (11)C13—C14—C15119.75 (12)
N2—C1—C2122.65 (11)C13—C14—H14120.1
N1—C1—C2118.46 (11)C15—C14—H14120.1
C10—C6—C9117.44 (9)C10—C15—C14120.94 (12)
C10—C6—C7118.19 (10)C10—C15—H15119.5
C9—C6—C7115.04 (10)C14—C15—H15119.5
C10—C6—C8118.76 (10)C5—C4—C3118.07 (11)
C9—C6—C8115.60 (10)C5—C4—H4121.0
C7—C6—C858.71 (9)C3—C4—H4121.0
C2—C3—C4120.64 (11)C8—C7—C660.72 (9)
C2—C3—H3119.7C8—C7—H7A117.7
C4—C3—H3119.7C6—C7—H7A117.7
O2—C9—O1124.47 (11)C8—C7—H7B117.7
O2—C9—C6118.39 (10)C6—C7—H7B117.7
O1—C9—C6117.13 (10)H7A—C7—H7B114.8
C10—C11—C12120.92 (11)C14—C13—C12120.03 (11)
C10—C11—H11119.5C14—C13—H13120.0
C12—C11—H11119.5C12—C13—H13120.0
C11—C10—C15118.48 (11)C7—C8—C660.57 (8)
C11—C10—C6120.06 (10)C7—C8—H8A117.7
C15—C10—C6121.46 (11)C6—C8—H8A117.7
C13—C12—C11119.87 (11)C7—C8—H8B117.7
C13—C12—H12120.1C6—C8—H8B117.7
C11—C12—H12120.1H8A—C8—H8B114.8

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.983 (19)1.64 (2)2.6255 (15)176.2 (17)
N2—H6···O2i0.913 (18)1.938 (18)2.8230 (16)162.6 (16)
N2—H9···O20.949 (19)1.844 (19)2.7903 (15)175.2 (16)
C11—H11···O1ii0.952.533.479 (2)178
C12—H12···O1iii0.952.473.3212 (18)149
C2—H2···Cg1i0.952.623.5464 (15)166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5075).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des.5, 1169–1179.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
  • Chitra, R., Roussel, P., Capet, F., Murli, C. & Choudhury, R. R. (2008). J. Mol. Struct.891, 103-109.
  • He, G., Chow, P. S. & Tan, R. B. H. (2009). Cryst. Growth Des.9, 4529–4532.
  • Li, J., Li, H. & Sui, L. (2007). Acta Cryst. E63, o4370.
  • Li, S.-L., Ma, J.-F. & Ping, G.-J. (2006). Acta Cryst. E62, o1173-o1175.
  • O’Neil, M. J. (2006). The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed. Merck: Whitehouse Station.
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o2230. [PMC free article] [PubMed]
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sivaramkumar, M. S., Velmurugan, R., Sekar, M., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1821. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xie, Z.-Y. (2007). Acta Cryst. E63, o2192–o2193.
  • Yang, D.-J. & Qu, S.-H. (2006). Acta Cryst. E62, o5127–o5129.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography