PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3268.
Published online 2010 November 24. doi:  10.1107/S1600536810047410
PMCID: PMC3011637

2,6-Dibromo-4-butyl­aniline

Abstract

In the title compound, C10H13Br2N, the amino N atom is essentially coplanar with the benzene ring, with an r.m.s. deviation of 0.004 Å. Weak intra­molecular N—H(...)Br hydrogen bonds occur. In the crystal, mol­ecules are linked into a zigzag chain parallel to the b axis by weak N—H(...)N hydrogen bonds.

Related literature

For related compounds, see: Fender et al. (2002 [triangle]); Grabowski (2005 [triangle]); Kryatova et al. (2004 [triangle]); Lehn (1995 [triangle]); Pedersen (1967 [triangle]); Scheiner (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3268-scheme1.jpg

Experimental

Crystal data

  • C10H13Br2N
  • M r = 307.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3268-efi4.jpg
  • a = 17.566 (4) Å
  • b = 4.6083 (9) Å
  • c = 29.023 (6) Å
  • β = 98.93 (3)°
  • V = 2320.8 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.94 mm−1
  • T = 298 K
  • 0.10 × 0.03 × 0.03 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.910, T max = 1.000
  • 9142 measured reflections
  • 2633 independent reflections
  • 1286 reflections with I > 2σ(I)
  • R int = 0.117

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.187
  • S = 0.98
  • 2633 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047410/dn2624sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047410/dn2624Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a School Start-up Grant to LZ.

supplementary crystallographic information

Comment

In recent years there has been a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition devices (Fender et al., 2002; Kryatova et al., 2004; Pedersen, 1967). The supramolecular system generally refers to an assembly of molecules which are not covalently connected but assembled by other weak intermolecular interactions, such as hydrogen bonds (Grabowski, 2005; Lehn, 1995; Scheiner, 1997). We report here the crystal structure of the title compound, 2,6-dibromo-4-butylaniline.

In the title compound (Fig.1), the N atom of the amine group is essentially coplanar with the phenyl ring, with a r.m.s. deviation of 0.004 Å. This planar conformation might be resulting from weak intramolecular N-H···Br hydrogen bonds (Table 1). The butyl group is twisted with respect to the phenyl ring resulting in torsion angles of -179.1 (7)° for C9—C8—C7—C6 and -174.7 (7)° for C7—C8—C9—C10. Bond lengths and angles lie within normal ranges.

In the crystal structure, the organic molecules are linked to form a one-dimensional chain along b axis by N1—H···N1 hydrogen bonds (Table 1, Fig.2).

Experimental

2,6-dibromo-4-butylaniline (3 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement

All H atoms attached to C and N atoms were calculated geometrically and treated as riding on their parent atoms with C–H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and N-H = 0.86 Å, with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of the title compound along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code: (i) -x+1/2, y-1/2, -z+1/2]

Crystal data

C10H13Br2NF(000) = 1200
Mr = 307.03Dx = 1.757 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2633 reflections
a = 17.566 (4) Åθ = 3.4–27.5°
b = 4.6083 (9) ŵ = 6.94 mm1
c = 29.023 (6) ÅT = 298 K
β = 98.93 (3)°Block, colourless
V = 2320.8 (8) Å30.10 × 0.03 × 0.03 mm
Z = 8

Data collection

Rigaku Mercury2 diffractometer2633 independent reflections
Radiation source: fine-focus sealed tube1286 reflections with I > 2σ(I)
graphiteRint = 0.117
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD profile fitting scansh = −22→22
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −5→5
Tmin = 0.910, Tmax = 1.000l = −37→37
9142 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.063P)2] where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.14631 (4)0.22239 (18)0.32043 (3)0.0773 (4)
Br20.46385 (4)0.3101 (2)0.30522 (3)0.0848 (4)
C30.3061 (3)0.2877 (13)0.31725 (18)0.0482 (17)
C60.3272 (5)0.6955 (13)0.3926 (2)0.0576 (18)
C20.2466 (3)0.3776 (13)0.3404 (2)0.0512 (16)
C40.3781 (3)0.4182 (15)0.33358 (18)0.0533 (16)
C50.3878 (4)0.6137 (13)0.36996 (19)0.0544 (17)
H50.43630.69310.37960.065*
C10.2562 (4)0.5724 (16)0.3769 (2)0.0596 (18)
H10.21410.62180.39120.072*
N10.2963 (3)0.1017 (12)0.28006 (16)0.0621 (15)
H1A0.25130.03350.26980.074*
H1B0.33510.05300.26700.074*
C80.3747 (5)0.7421 (14)0.4792 (2)0.076 (2)
H8A0.34040.58510.48470.091*
H8B0.42350.65660.47490.091*
C70.3402 (4)0.8986 (16)0.43391 (19)0.072 (2)
H7A0.29140.98620.43800.086*
H7B0.37471.05300.42770.086*
C90.3877 (4)0.9328 (19)0.5218 (2)0.086 (2)
H9A0.41821.09950.51550.104*
H9B0.33841.00340.52820.104*
C100.4278 (5)0.7778 (17)0.5637 (2)0.102 (3)
H10A0.43520.90840.58980.153*
H10B0.47690.70940.55770.153*
H10C0.39710.61600.57070.153*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0492 (5)0.0947 (7)0.0848 (6)−0.0081 (4)0.0005 (4)0.0069 (4)
Br20.0537 (6)0.1252 (9)0.0770 (6)−0.0047 (4)0.0148 (4)−0.0111 (4)
C30.046 (4)0.059 (4)0.039 (3)0.001 (3)0.004 (3)0.008 (3)
C60.080 (5)0.046 (4)0.043 (4)0.008 (4)−0.004 (3)0.005 (3)
C20.055 (4)0.045 (4)0.052 (4)−0.004 (3)0.002 (3)0.008 (3)
C40.047 (4)0.066 (5)0.044 (3)0.001 (3)−0.003 (3)0.000 (3)
C50.058 (4)0.057 (4)0.044 (4)−0.004 (3)−0.004 (3)0.010 (3)
C10.054 (5)0.076 (5)0.051 (4)0.011 (4)0.014 (3)0.017 (4)
N10.057 (3)0.075 (4)0.049 (3)−0.005 (3)−0.008 (2)−0.008 (3)
C80.094 (6)0.073 (5)0.059 (4)0.018 (4)0.010 (4)−0.004 (4)
C70.099 (6)0.062 (5)0.051 (4)−0.009 (4)0.002 (4)0.000 (4)
C90.112 (6)0.091 (6)0.054 (4)0.011 (5)0.005 (4)−0.014 (4)
C100.104 (7)0.146 (9)0.050 (4)0.024 (5)−0.008 (4)−0.009 (5)

Geometric parameters (Å, °)

Br1—C21.906 (6)N1—H1B0.8600
Br2—C41.891 (6)C8—C91.504 (9)
C3—N11.368 (7)C8—C71.539 (9)
C3—C21.392 (8)C8—H8A0.9700
C3—C41.414 (8)C8—H8B0.9700
C6—C11.382 (9)C7—H7A0.9700
C6—C51.387 (9)C7—H7B0.9700
C6—C71.510 (9)C9—C101.491 (10)
C2—C11.379 (8)C9—H9A0.9700
C4—C51.378 (8)C9—H9B0.9700
C5—H50.9300C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
N1—H1A0.8600C10—H10C0.9600
N1—C3—C2123.7 (5)C7—C8—H8A108.6
N1—C3—C4121.9 (5)C9—C8—H8B108.6
C2—C3—C4114.3 (5)C7—C8—H8B108.6
C1—C6—C5116.9 (6)H8A—C8—H8B107.6
C1—C6—C7122.2 (7)C6—C7—C8112.2 (6)
C5—C6—C7120.9 (6)C6—C7—H7A109.2
C1—C2—C3123.6 (6)C8—C7—H7A109.2
C1—C2—Br1118.3 (5)C6—C7—H7B109.2
C3—C2—Br1118.0 (5)C8—C7—H7B109.2
C5—C4—C3122.1 (6)H7A—C7—H7B107.9
C5—C4—Br2119.6 (5)C10—C9—C8112.6 (7)
C3—C4—Br2118.2 (4)C10—C9—H9A109.1
C4—C5—C6121.9 (6)C8—C9—H9A109.1
C4—C5—H5119.0C10—C9—H9B109.1
C6—C5—H5119.0C8—C9—H9B109.1
C2—C1—C6121.1 (6)H9A—C9—H9B107.8
C2—C1—H1119.4C9—C10—H10A109.5
C6—C1—H1119.4C9—C10—H10B109.5
C3—N1—H1A120.0H10A—C10—H10B109.5
C3—N1—H1B120.0C9—C10—H10C109.5
H1A—N1—H1B120.0H10A—C10—H10C109.5
C9—C8—C7114.7 (6)H10B—C10—H10C109.5
C9—C8—H8A108.6
N1—C3—C2—C1−177.8 (6)C1—C6—C5—C4−0.2 (9)
C4—C3—C2—C1−1.3 (8)C7—C6—C5—C4176.9 (6)
N1—C3—C2—Br12.2 (8)C3—C2—C1—C60.8 (10)
C4—C3—C2—Br1178.7 (4)Br1—C2—C1—C6−179.1 (5)
N1—C3—C4—C5177.6 (5)C5—C6—C1—C20.0 (9)
C2—C3—C4—C51.1 (8)C7—C6—C1—C2−177.1 (6)
N1—C3—C4—Br2−4.1 (8)C1—C6—C7—C897.6 (8)
C2—C3—C4—Br2179.3 (4)C5—C6—C7—C8−79.4 (8)
C3—C4—C5—C6−0.3 (9)C9—C8—C7—C6−179.1 (6)
Br2—C4—C5—C6−178.6 (4)C7—C8—C9—C10−174.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.533.181 (7)134
N1—H1A···Br10.862.683.095 (5)111
N1—H1B···Br20.862.643.074 (5)113

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2624).

References

  • Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem.163, 286–293.
  • Grabowski, S. J. (2005). Struct. Chem.16, 175–176.
  • Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.
  • Lehn, J. M. (1995). In Supramolecular Chemistry: Concepts and Perspectives Weinheim: VCH.
  • Pedersen, C. J. (1967). J. Am. Chem. Soc.89, 2495–2495.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Scheiner, S. (1997). In Hydrogen Bonding New York: Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography