PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1669.
Published online 2010 November 27. doi:  10.1107/S1600536810048300
PMCID: PMC3011636

Monoclinic modification of di-n-butyl­dichlorido(1,10-phenanthroline-κ2 N,N′)tin(IV)

Abstract

The Sn(IV) atom in the title compound, [Sn(C4H9)2Cl2(C12H8N2)], is chelated by the N-heterocycle; the n-butyl groups are trans to each other whereas the Cl atoms are cis to each other. The crystal studied was a non-merohedral twin with the minor domain being in a 15.8 (1)% proportion.

Related literature

For the ortho­rhom­bic modification, see: Ganis et al. (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1669-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2Cl2(C12H8N2)]
  • M r = 484.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1669-efi1.jpg
  • a = 11.1400 (2) Å
  • b = 10.4566 (2) Å
  • c = 17.9375 (4) Å
  • β = 92.125 (2)°
  • V = 2088.04 (7) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 12.12 mm−1
  • T = 100 K
  • 0.20 × 0.10 × 0.02 mm

Data collection

  • Agilent SuperNova diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010 [triangle]) T min = 0.196, T max = 0.794
  • 15170 measured reflections
  • 11290 independent reflections
  • 10561 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.185
  • S = 1.08
  • 11290 reflections
  • 227 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 2.11 e Å−3
  • Δρmin = −1.95 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048300/hg2755sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048300/hg2755Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The di-n-butyltin dichloride adduct with 1,10-phenanthroline (Scheme I) belongs to the P212121 space group (Ganis et al., 1983). The complexation of the organotin halide with the N-heterocycle in ethanol solvent yielded a monoclinic modification as plate-like crystals that grew over one another. The molecule has the tin atom in an octahedral geometry (Fig. 1). The n-butyl groups are trans to each other whereas the chlorine atoms are cis to each other. The crystal studied is a non-merohedral twin with the minor domain being in a 15.8 (1)% proportion; the nature of the twin led to a moderately satisfactory weighting scheme in the refinement.

Experimental

Di-n-butyltin dichloride (0.15 g, 0.5 mmol) and 1,10-phenanthroline hydrate (0.10, 0.5 mmol) were dissolved in boiling ethanol (10 mol). Colorless plates separated from solution after several days. A tiny platelet was prized from a lump of larger blocked that grew on top of each other.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The anisotropic temperature factors of the C9 atom were restrained to be nearly isotropic so as to prevent the atom from being too oblate.

The final difference Fourier map had a peak and a hole in the vicinity of Cl2.

The crystal studied is a non-merohedral twin; the minor component refined to a 15.8 (1)% proportion.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of SnCl2(C4H9)2(C12H8N2)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(C4H9)2Cl2(C12H8N2)]F(000) = 976
Mr = 484.02Dx = 1.540 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 13483 reflections
a = 11.1400 (2) Åθ = 4.0–74.1°
b = 10.4566 (2) ŵ = 12.12 mm1
c = 17.9375 (4) ÅT = 100 K
β = 92.125 (2)°Plate, colorless
V = 2088.04 (7) Å30.20 × 0.10 × 0.02 mm
Z = 4

Data collection

Agilent SuperNova diffractometer11290 independent reflections
Radiation source: fine-focus sealed tube10561 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 4.0°
ω scansh = −13→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010)k = −13→13
Tmin = 0.196, Tmax = 0.794l = −22→22
15170 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.1271P)2 + 6.6598P] where P = (Fo2 + 2Fc2)/3
11290 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 2.11 e Å3
6 restraintsΔρmin = −1.95 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.850086 (19)0.57324 (2)0.236808 (12)0.00995 (12)
Cl10.77760 (8)0.43243 (8)0.12497 (5)0.0141 (2)
Cl21.07589 (8)0.55970 (9)0.24257 (5)0.0181 (2)
N10.6455 (3)0.6191 (3)0.26722 (16)0.0131 (7)
N20.8463 (3)0.7174 (3)0.33789 (17)0.0132 (6)
C10.8297 (4)0.4069 (4)0.3057 (2)0.0167 (8)
H1A0.74860.37110.29530.020*
H1B0.88860.34190.29060.020*
C20.8459 (4)0.4277 (4)0.3895 (2)0.0204 (9)
H2A0.78510.48990.40560.024*
H2B0.92620.46500.40050.024*
C30.8336 (5)0.3035 (5)0.4346 (3)0.0290 (10)
H3A0.89840.24410.42100.035*
H3B0.84550.32380.48830.035*
C40.7140 (5)0.2362 (5)0.4229 (3)0.0308 (11)
H4A0.71340.15820.45310.046*
H4B0.70200.21380.37010.046*
H4C0.64920.29310.43780.046*
C50.8563 (4)0.7339 (4)0.1626 (2)0.0147 (7)
H5A0.90060.80370.18890.018*
H5B0.90390.70880.11940.018*
C60.7366 (4)0.7876 (4)0.1328 (2)0.0170 (8)
H6A0.68830.81480.17520.020*
H6B0.69160.71960.10540.020*
C70.7538 (4)0.9014 (4)0.0808 (2)0.0193 (8)
H7A0.80730.87600.04050.023*
H7B0.79330.97190.10920.023*
C80.6344 (4)0.9490 (4)0.0463 (2)0.0232 (9)
H8A0.64931.02150.01320.035*
H8B0.58190.97620.08590.035*
H8C0.59560.87990.01750.035*
C90.5485 (3)0.5678 (4)0.2335 (2)0.0143 (8)
H90.55880.51090.19290.017*
C100.4306 (3)0.5949 (4)0.2560 (2)0.0165 (8)
H100.36300.55610.23130.020*
C110.4158 (4)0.6779 (4)0.3140 (2)0.0185 (8)
H110.33730.69810.32930.022*
C120.5168 (4)0.7337 (4)0.3512 (2)0.0146 (8)
C130.6310 (3)0.7008 (4)0.3260 (2)0.0129 (7)
C140.5086 (4)0.8193 (4)0.4132 (2)0.0178 (8)
H140.43180.84090.43090.021*
C150.6084 (4)0.8701 (4)0.4470 (2)0.0176 (8)
H150.60060.92740.48770.021*
C160.7249 (4)0.8387 (4)0.4224 (2)0.0144 (8)
C170.7368 (4)0.7535 (4)0.3623 (2)0.0127 (7)
C180.8308 (4)0.8872 (4)0.4573 (2)0.0163 (8)
H180.82650.94450.49820.020*
C190.9403 (4)0.8510 (4)0.4316 (2)0.0178 (8)
H191.01260.88320.45430.021*
C200.9440 (4)0.7658 (4)0.3714 (2)0.0154 (8)
H201.02010.74160.35380.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01113 (16)0.00941 (16)0.00932 (16)0.00028 (9)0.00064 (10)0.00029 (7)
Cl10.0165 (4)0.0137 (5)0.0122 (4)−0.0033 (3)0.0011 (3)−0.0012 (3)
Cl20.0148 (4)0.0177 (5)0.0218 (5)0.0010 (4)0.0015 (4)0.0016 (3)
N10.0161 (18)0.0099 (16)0.0135 (15)−0.0038 (12)0.0006 (13)−0.0013 (11)
N20.0169 (17)0.0113 (15)0.0113 (14)0.0026 (13)0.0013 (12)−0.0023 (11)
C10.023 (2)0.0127 (17)0.0148 (18)0.0005 (16)0.0005 (15)0.0012 (14)
C20.026 (2)0.021 (2)0.0139 (19)−0.0023 (17)0.0005 (16)0.0048 (14)
C30.035 (3)0.031 (3)0.021 (2)0.011 (2)0.0071 (19)0.0113 (18)
C40.050 (3)0.017 (2)0.025 (2)−0.001 (2)0.010 (2)0.0013 (17)
C50.0162 (18)0.0140 (18)0.0138 (16)−0.0022 (15)0.0006 (14)0.0018 (13)
C60.0164 (19)0.0157 (19)0.0189 (18)0.0007 (16)−0.0001 (15)0.0024 (15)
C70.024 (2)0.0156 (18)0.0183 (18)−0.0009 (17)−0.0046 (16)0.0022 (16)
C80.029 (2)0.019 (2)0.022 (2)0.0066 (18)−0.0054 (17)0.0017 (16)
C90.0026 (16)0.018 (2)0.0218 (19)−0.0003 (14)−0.0025 (14)0.0012 (14)
C100.0059 (18)0.0191 (19)0.024 (2)0.0057 (15)−0.0003 (14)0.0005 (15)
C110.0122 (18)0.022 (2)0.0215 (18)0.0017 (16)−0.0012 (15)0.0043 (16)
C120.0131 (19)0.0135 (18)0.0171 (17)0.0030 (15)0.0006 (14)0.0031 (14)
C130.0123 (19)0.0141 (18)0.0121 (16)0.0076 (15)0.0005 (14)0.0030 (13)
C140.0169 (19)0.020 (2)0.0160 (17)0.0069 (16)0.0030 (14)0.0007 (15)
C150.021 (2)0.018 (2)0.0141 (17)0.0063 (16)0.0021 (15)−0.0023 (14)
C160.019 (2)0.0119 (19)0.0125 (16)0.0018 (15)0.0023 (14)0.0024 (14)
C170.0144 (19)0.0112 (18)0.0122 (16)0.0006 (14)−0.0025 (13)0.0042 (14)
C180.023 (2)0.0127 (19)0.0136 (16)−0.0016 (16)0.0001 (15)−0.0011 (14)
C190.019 (2)0.020 (2)0.0144 (17)−0.0057 (17)−0.0001 (15)−0.0028 (15)
C200.0112 (18)0.017 (2)0.0173 (17)−0.0018 (15)−0.0008 (14)−0.0009 (15)

Geometric parameters (Å, °)

Sn1—C52.146 (4)C6—H6B0.9900
Sn1—C12.150 (4)C7—C81.530 (6)
Sn1—N22.360 (3)C7—H7A0.9900
Sn1—N12.412 (3)C7—H7B0.9900
Sn1—Cl22.5177 (9)C8—H8A0.9800
Sn1—Cl12.5931 (9)C8—H8B0.9800
N1—C91.331 (5)C8—H8C0.9800
N1—C131.371 (5)C9—C101.417 (5)
N2—C201.323 (5)C9—H90.9500
N2—C171.365 (5)C10—C111.371 (6)
C1—C21.523 (6)C10—H100.9500
C1—H1A0.9900C11—C121.413 (6)
C1—H1B0.9900C11—H110.9500
C2—C31.538 (6)C12—C131.408 (5)
C2—H2A0.9900C12—C141.434 (6)
C2—H2B0.9900C13—C171.435 (5)
C3—C41.515 (7)C14—C151.355 (6)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.424 (5)
C4—H4A0.9800C15—H150.9500
C4—H4B0.9800C16—C171.409 (5)
C4—H4C0.9800C16—C181.409 (6)
C5—C61.525 (5)C18—C191.373 (6)
C5—H5A0.9900C18—H180.9500
C5—H5B0.9900C19—C201.402 (5)
C6—C71.528 (6)C19—H190.9500
C6—H6A0.9900C20—H200.9500
C5—Sn1—C1174.93 (15)C7—C6—H6A109.2
C5—Sn1—N288.76 (13)C5—C6—H6B109.2
C1—Sn1—N294.01 (13)C7—C6—H6B109.2
C5—Sn1—N192.13 (13)H6A—C6—H6B107.9
C1—Sn1—N184.85 (14)C6—C7—C8112.0 (4)
N2—Sn1—N169.83 (11)C6—C7—H7A109.2
C5—Sn1—Cl290.81 (11)C8—C7—H7A109.2
C1—Sn1—Cl293.29 (12)C6—C7—H7B109.2
N2—Sn1—Cl292.90 (9)C8—C7—H7B109.2
N1—Sn1—Cl2162.40 (8)H7A—C7—H7B107.9
C5—Sn1—Cl188.91 (10)C7—C8—H8A109.5
C1—Sn1—Cl187.07 (11)C7—C8—H8B109.5
N2—Sn1—Cl1160.62 (9)H8A—C8—H8B109.5
N1—Sn1—Cl191.04 (8)C7—C8—H8C109.5
Cl2—Sn1—Cl1106.37 (3)H8A—C8—H8C109.5
C9—N1—C13118.9 (3)H8B—C8—H8C109.5
C9—N1—Sn1125.1 (3)N1—C9—C10122.4 (4)
C13—N1—Sn1115.9 (2)N1—C9—H9118.8
C20—N2—C17118.6 (3)C10—C9—H9118.8
C20—N2—Sn1123.7 (3)C11—C10—C9118.8 (4)
C17—N2—Sn1117.7 (3)C11—C10—H10120.6
C2—C1—Sn1116.2 (3)C9—C10—H10120.6
C2—C1—H1A108.2C10—C11—C12120.3 (4)
Sn1—C1—H1A108.2C10—C11—H11119.9
C2—C1—H1B108.2C12—C11—H11119.9
Sn1—C1—H1B108.2C13—C12—C11117.5 (4)
H1A—C1—H1B107.4C13—C12—C14119.1 (4)
C1—C2—C3112.9 (4)C11—C12—C14123.4 (4)
C1—C2—H2A109.0N1—C13—C12122.2 (4)
C3—C2—H2A109.0N1—C13—C17118.0 (3)
C1—C2—H2B109.0C12—C13—C17119.8 (4)
C3—C2—H2B109.0C15—C14—C12121.1 (4)
H2A—C2—H2B107.8C15—C14—H14119.4
C4—C3—C2114.4 (4)C12—C14—H14119.4
C4—C3—H3A108.6C14—C15—C16120.9 (4)
C2—C3—H3A108.6C14—C15—H15119.6
C4—C3—H3B108.6C16—C15—H15119.6
C2—C3—H3B108.6C17—C16—C18117.8 (4)
H3A—C3—H3B107.6C17—C16—C15119.7 (4)
C3—C4—H4A109.5C18—C16—C15122.5 (4)
C3—C4—H4B109.5N2—C17—C16122.1 (4)
H4A—C4—H4B109.5N2—C17—C13118.5 (4)
C3—C4—H4C109.5C16—C17—C13119.4 (4)
H4A—C4—H4C109.5C19—C18—C16119.4 (4)
H4B—C4—H4C109.5C19—C18—H18120.3
C6—C5—Sn1117.2 (3)C16—C18—H18120.3
C6—C5—H5A108.0C18—C19—C20119.0 (4)
Sn1—C5—H5A108.0C18—C19—H19120.5
C6—C5—H5B108.0C20—C19—H19120.5
Sn1—C5—H5B108.0N2—C20—C19123.1 (4)
H5A—C5—H5B107.2N2—C20—H20118.5
C5—C6—C7111.9 (3)C19—C20—H20118.5
C5—C6—H6A109.2
C5—Sn1—N1—C994.0 (3)C9—C10—C11—C12−0.9 (6)
C1—Sn1—N1—C9−81.9 (3)C10—C11—C12—C130.2 (6)
N2—Sn1—N1—C9−178.1 (3)C10—C11—C12—C14−178.7 (4)
Cl2—Sn1—N1—C9−166.5 (2)C9—N1—C13—C12−1.0 (5)
Cl1—Sn1—N1—C95.1 (3)Sn1—N1—C13—C12−178.4 (3)
C5—Sn1—N1—C13−88.8 (3)C9—N1—C13—C17179.0 (3)
C1—Sn1—N1—C1395.3 (3)Sn1—N1—C13—C171.7 (4)
N2—Sn1—N1—C13−0.9 (3)C11—C12—C13—N10.8 (5)
Cl2—Sn1—N1—C1310.6 (5)C14—C12—C13—N1179.8 (4)
Cl1—Sn1—N1—C13−177.7 (3)C11—C12—C13—C17−179.3 (3)
C5—Sn1—N2—C20−86.5 (3)C14—C12—C13—C17−0.3 (5)
C1—Sn1—N2—C2097.7 (3)C13—C12—C14—C150.9 (6)
N1—Sn1—N2—C20−179.2 (3)C11—C12—C14—C15179.9 (4)
Cl2—Sn1—N2—C204.2 (3)C12—C14—C15—C16−0.7 (6)
Cl1—Sn1—N2—C20−169.7 (2)C14—C15—C16—C17−0.1 (6)
C5—Sn1—N2—C1792.7 (3)C14—C15—C16—C18−178.5 (4)
C1—Sn1—N2—C17−83.0 (3)C20—N2—C17—C16−1.0 (5)
N1—Sn1—N2—C170.0 (2)Sn1—N2—C17—C16179.7 (3)
Cl2—Sn1—N2—C17−176.5 (2)C20—N2—C17—C13−179.9 (3)
Cl1—Sn1—N2—C179.6 (4)Sn1—N2—C17—C130.8 (4)
N2—Sn1—C1—C2−12.1 (3)C18—C16—C17—N20.4 (5)
N1—Sn1—C1—C2−81.4 (3)C15—C16—C17—N2−178.1 (3)
Cl2—Sn1—C1—C281.1 (3)C18—C16—C17—C13179.2 (3)
Cl1—Sn1—C1—C2−172.7 (3)C15—C16—C17—C130.7 (5)
Sn1—C1—C2—C3−178.3 (3)N1—C13—C17—N2−1.7 (5)
C1—C2—C3—C4−58.7 (5)C12—C13—C17—N2178.4 (3)
N2—Sn1—C5—C6−90.3 (3)N1—C13—C17—C16179.4 (3)
N1—Sn1—C5—C6−20.5 (3)C12—C13—C17—C16−0.5 (5)
Cl2—Sn1—C5—C6176.9 (3)C17—C16—C18—C190.3 (5)
Cl1—Sn1—C5—C670.5 (3)C15—C16—C18—C19178.7 (4)
Sn1—C5—C6—C7180.0 (3)C16—C18—C19—C20−0.3 (6)
C5—C6—C7—C8175.7 (3)C17—N2—C20—C191.0 (6)
C13—N1—C9—C100.3 (6)Sn1—N2—C20—C19−179.7 (3)
Sn1—N1—C9—C10177.4 (3)C18—C19—C20—N2−0.4 (6)
N1—C9—C10—C110.7 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2755).

References

  • Agilent Technologies (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Ganis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem.256, 245–250.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography