PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1648–m1649.
Published online 2010 November 24. doi:  10.1107/S1600536810045393
PMCID: PMC3011627

μ-Oxido-bis{[2,2-bis­(3,5-dimethyl-1H-pyrazol-1-yl)acetato-κ3 N 2,O,N 2′]chloridooxidomolybdenum(V)} mono­hydrate

Abstract

In the binuclear title compound, [Mo2(C12H15N4O2)2Cl2O3]·H2O, the complex mol­ecules have approximate C 2 symmetry. Both MoV atoms have a distorted octa­hedral coordination environment with cis-positioned terminal chloride and oxide groups. The heteroscorpionate organic ligand binds to the MoV atom via an N2O donor set. The water mol­ecule bridges two complex mol­ecules, forming O—H(...)O and O—H(...)Cl hydrogen bonds to the acetate group and to the chloride ligands.

Related literature

The prepraration of the first ‘scorpionate’ complex was described by Trofimenko (1967 [triangle]). For the importance of the structures of Mo(VI/V/IV) complexes related to the Mo-enzymes, see: Hille (1996 [triangle]); Heinze & Fischer (2010 [triangle]). For complexes with κ3 N,N′,O-bound heteroscorpionate ligands, see: Otero et al. (2004 [triangle]); Burzlaff (2008 [triangle]); Kitanovski et al. (2006 [triangle]). For Mo complexes with bis­(3,5 dimethyl-1H-pyrazol-1-yl)acetate ligands, see: Kitanovski et al. (2006 [triangle]); Hammes et al. (2004 [triangle]). For the weighting scheme used in the refinement, see: Wang et al. (1985 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-m1648-scheme1.jpg

Experimental

Crystal data

  • [Mo2(C12H15N4O2)2Cl2O3]·H2O
  • M r = 823.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1648-efi1.jpg
  • a = 14.6869 (1) Å
  • b = 20.6499 (2) Å
  • c = 21.0082 (2) Å
  • V = 6371.43 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 293 K
  • 0.30 × 0.15 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) [triangle] T min = 0.69, T max = 0.95
  • 91066 measured reflections
  • 7300 independent reflections
  • 5534 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.028
  • S = 1.42
  • 6640 reflections
  • 397 parameters
  • H-atom parameters not refined
  • Δρmax = 0.97 e Å−3
  • Δρmin = −1.50 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: Xtal3.6 (Hall et al., 1999 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: Xtal3.6.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045393/gk2307sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045393/gk2307Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for the financial contribution of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia through grants X-2000 and PO-511–103.

supplementary crystallographic information

Comment

Since the preparation of the first tris(pyrazolyl)borate-complexes by Trofimenko (1967) the coordination compounds of almost all transition elements with different "scorpionate" ligands have been prepared. The characteristics and the synthetic routes of divers tripodal heteroscorpionate N,N,O-, N,N,S- and, N,N,N- ligands based on bis(pyrazol-1-yl)acetate, -thioacetate and -ethoxide with pyrazolyl rings substituted at 3 and 5 positions, as well as their complexes with different metals have been discussed. (Otero et al., 2004). For some time afterwards, the complexes with metal atoms coordinated with tripodal κ3N,N',O-bound "scorpionate" ligands have attracted considerable interest because they can serve as structural models, mimicking the active sites like, for example, the 2-His-1-carboxylate triad, which is present in different metalloenzymes and –proteins, mostly containing Zn, Fe, Mn, Ni, Co and Mo atoms (Burzlaff, 2008). The mononuclear molybdenum-containing enzymes serve for catalyzing of a net oxygen atom transfer with the Mo atom cycling between +4 and +6 oxidation states (Hille, 1996). The elucidation of the structures of mononuclear Mo(VI/V/IV) complexes can help the understanding of interaction of the intermediate, and resting states of these enzymes (Heinze & Fischer, 2010). The complexes with di-1H-pyrazol-1-ylacetate, substituted at the 3 and 5 positions, are known with more than a half of d-elements in different oxidation states (Kitanovski et al., 2006). Some Mo(VI), and Mo(V) complexes with bdmpza as ligand have already been prepared so far (Hammes et al., 2004; Kitanovski et al., 2006).

The compound crystallizes in the orthorhombic space group Pbca with eight binuclear complex molecules and eight water molecules per unit cell. Both MoCl(O)(bdmpza) moieties are symmetry independent. The Mo1—-O1 and Mo2—-O2 bond lengths are 1.675 (3) and 1.674 (3) Å, and the Mo1—-Cl1 and Mo2—-Cl2 bond distances are 2.3594 (11) and 2.3759 (11) Å, respectively. With respect to the nonlinear Mo—-O—-Mo bridge (178.31 (16)°), the Mo=O vectors in the binuclear unit adopt an anti-orientation (torsion angle O1—Mo1—Mo2—O2 is 175.59 (14)°), and the Mo—-Cl vectors an approximate cis-orientation (torsion angle Cl1—Mo1—Mo2—Cl2 is -31.01 (4)°). The O-atom of Mo=O and the coordinated O-atom of the acetate group are in trans-position (O1—Mo1—O1a 164.75 (12) and O2—Mo2—O1c 165.25 (12)°). Both central atoms have a significantly distorted octahedral coordination, caused in first line by a typically low angles between κ3N,N',O-coordination bonds with Mo-atom (between 78.28 (11) and 81.07 (12)° for Mo1, and between 78.09 (10) and 80.90 (11)° for Mo2). The high values are also observed between Mo=O and Mo—-Cl bonds (102.86 (10)° for Mo1 and 102.51 (10)° for Mo2, respectively). The solvate water acts as a donor of two weak hydrogen bonds accepted by the uncoordinated O2c of the acetate ligand from the same asymmetric unit (with O1w···O2c distance 2.889 (8) Å) and Cl2 from symmetry related unit (with O1w···Cl2(x,3/2 - y,1/2 + z) distance 3.335 (7) Å).

Experimental

A mixture of MoCl4(CH3CN)2 (0.450 mg, 1.40 mmol), Hdmpza (0.347 g, 1.40 mmol) and acetonitrile (20 ml) was stirred at room temperature. At first the mixture became clear and after an hour the orange precipitate started to separate. After the filtration of the precipitate, a small amount of water (0.13 g) was added to the portion of filtrate (0.65 g) and the solution left on air at room temperature. After about 14 h the black crystals, suitable for X-ray diffraction started to grow and were isolated in 45% yield. Anal. Calcd. for C24H32Cl2N8O8: C,35.01; H, 3.92; N, 13.61. Found: C, 35.74; H, 4.03; N, 13.71.

Refinement

Full matrix least-squares refinement on F values with anisotropic displacement parameters for all non-hydrogen atoms was employed. Hydrogen atoms were located from difference Fourier maps. Their parameters were not refined. A REGINA (Wang et al., 1985) weighting scheme using the normal equation of the second order was applied for individual reflections so that w= A(0,0) + A(1,0)V(F) + A(0,1)V(S) + A(2,0)V(F)2 + A(0,2)V(S)2 + A(1,1)V(F)V(S), where V(F)= Fobs/Fobs(max), Fobs(max)= 496.47 and V(S)=(sinθ/λ)/ ((sinθ/λ)(max)),(sinθ/λ)(max)=.6495. The parameters were: A(0,0) = 110.7607, A(1,0) = .7072179 A(0,1) = -502.5041, A(2,0) = -.0004053 A(1,1) = -1.637116, A(0,2) = 576.1985. The location of the deepest hole is at the site of Mo2 atom.

Figures

Fig. 1.
ORTEP drawing of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are drawn as small spheres of arbitrary radii.

Crystal data

[Mo2(C12H15N4O2)2Cl2O3]·H2OF(000) = 3312
Mr = 823.36Dx = 1.717 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2abCell parameters from 7980 reflections
a = 14.6869 (1) Åθ = 2.6–27.5°
b = 20.6499 (2) ŵ = 1.01 mm1
c = 21.0082 (2) ÅT = 293 K
V = 6371.43 (10) Å3Plate, black
Z = 80.3 × 0.15 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer5534 reflections with F2 > 2σ(F2)
[var phi] and ω scansRint = 0.064
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997)θmax = 27.5°, θmin = 2.6°
Tmin = 0.69, Tmax = 0.95h = −19→19
91066 measured reflectionsk = −26→26
7300 independent reflectionsl = −27→27

Refinement

Refinement on F0 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.028H-atom parameters not refined
S = 1.42 A REGINA (Wang et al., 1985) weighting scheme using the normal equation of the second order was applied for individual reflections so that w = A(0,0) + A(1,0)V(F) + A(0,1)V(S) + A(2,0)V(F)2 + A(0,2)V(S)2 + A(1,1)V(F)V(S), where V(F) = Fobs/Fobs(max), Fobs(max) = 496.47 and V(S) = (sinθ/λ)/ ((sinθ/λ)(max)), (sinθ/λ)(max) = .6495. The parameters were: A(0,0) = 110.7607, A(1,0) = .7072179 A(0,1) = -502.5041, A(2,0) = -.0004053 A(1,1) = -1.637116, A(0,2) = 576.1985
6640 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = −1.50 e Å3

Special details

Refinement. Independent reflections: contributing reflections are all observed (I > 2?(I)) and those "less than" reflections for which Fcal > Fobs

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.356763 (18)0.580454 (15)0.363344 (13)0.03224 (16)
Mo20.127609 (18)0.634123 (13)0.418255 (13)0.03082 (15)
Cl10.33672 (7)0.63258 (6)0.26439 (5)0.0575 (6)
Cl20.13854 (8)0.72985 (5)0.35598 (5)0.0518 (5)
O10.42851 (19)0.63004 (14)0.40162 (14)0.0469 (14)
O20.05836 (19)0.58758 (15)0.37453 (13)0.0459 (14)
O30.24283 (17)0.60782 (13)0.39192 (12)0.0376 (12)
O1a0.29066 (17)0.49772 (14)0.32167 (12)0.0403 (14)
O1c0.19247 (17)0.68744 (13)0.49357 (13)0.0389 (13)
O1w0.1181 (6)0.7030 (5)0.7123 (3)0.120 (5)
O2a0.2706 (3)0.3928 (2)0.3027 (2)0.072 (2)
O2c0.2051 (4)0.7262 (3)0.5911 (2)0.102 (3)
N1a0.4782 (2)0.45992 (18)0.32861 (16)0.0426 (17)
N1b0.3950 (2)0.44470 (16)0.42532 (16)0.0381 (15)
N1c0.0069 (2)0.67646 (15)0.53542 (15)0.0364 (15)
N1d0.1010 (2)0.58456 (17)0.55781 (15)0.0363 (15)
N2a0.4745 (2)0.52597 (18)0.32370 (15)0.0404 (17)
N2b0.3723 (2)0.50768 (15)0.43911 (14)0.0348 (14)
N2c0.0083 (2)0.67518 (16)0.47019 (15)0.0374 (15)
N2d0.1203 (2)0.56463 (15)0.49686 (15)0.0343 (14)
C10.4037 (2)0.4250 (2)0.35926 (19)0.0400 (17)
C20.3131 (3)0.4384 (2)0.32399 (19)0.042 (2)
C30.0850 (2)0.6528 (2)0.57055 (17)0.0363 (17)
C40.1695 (3)0.6934 (2)0.5519 (2)0.043 (2)
C1a0.5527 (3)0.5441 (3)0.2959 (2)0.050 (2)
C1b0.3692 (2)0.5115 (2)0.50244 (17)0.0373 (18)
C1c−0.0725 (3)0.69854 (18)0.4513 (2)0.042 (2)
C1d0.1307 (2)0.50069 (18)0.5001 (2)0.0386 (18)
C2a0.6050 (3)0.4893 (3)0.2824 (2)0.054 (2)
C2b0.3862 (3)0.4508 (2)0.5289 (2)0.047 (2)
C2c−0.1235 (3)0.7160 (2)0.5045 (2)0.046 (2)
C2d0.1215 (3)0.4801 (2)0.5624 (2)0.049 (2)
C3a0.5574 (3)0.4366 (3)0.30345 (19)0.051 (2)
C3b0.4029 (3)0.4091 (2)0.4791 (2)0.043 (2)
C3c−0.0725 (3)0.70158 (18)0.5574 (2)0.041 (2)
C3d0.1028 (3)0.5335 (2)0.5988 (2)0.046 (2)
C4a0.5761 (3)0.6135 (3)0.2839 (3)0.064 (3)
C4b0.3479 (3)0.5733 (2)0.53618 (17)0.0436 (19)
C4c−0.0982 (3)0.7015 (2)0.3832 (2)0.054 (2)
C4d0.1487 (3)0.46071 (19)0.4415 (2)0.048 (2)
C5a0.5788 (4)0.3660 (3)0.3004 (3)0.066 (3)
C5b0.4230 (4)0.3388 (2)0.4802 (3)0.059 (3)
C5c−0.0935 (3)0.7086 (2)0.6267 (2)0.056 (2)
C5d0.0856 (4)0.5399 (3)0.6682 (2)0.066 (3)
H10.413200.375600.361300.05100*
H30.073650.658190.615120.04400*
H2a0.662840.488810.262120.06900*
H2b0.375600.441310.574700.06000*
H2c−0.188300.729800.508000.05800*
H2d0.127430.436660.577390.04800*
H41a0.527800.639900.294600.09700*
H41b0.403780.596630.540400.03500*
H41c−0.161090.690290.378450.08300*
H41d0.095510.460900.415350.07400*
H42a0.628210.624970.308710.09700*
H42b0.306660.600260.512660.03500*
H42c−0.087930.744440.367590.08300*
H42d0.198700.478630.417820.07400*
H43a0.589640.618950.239380.09700*
H43b0.324470.566340.578240.03500*
H43c−0.061180.671380.359750.08300*
H43d0.162720.416870.453180.07400*
H51a0.610910.356340.261960.10200*
H51b0.470000.333110.453700.09200*
H51c−0.155470.722950.630450.08700*
H51d0.029010.561770.674370.08600*
H52a0.615420.355040.336850.10200*
H52b0.438470.325260.522190.09200*
H52c−0.088090.668390.648950.08700*
H52d0.081870.497970.687660.08600*
H53a0.522710.342240.302070.10200*
H53b0.371100.314830.465230.09200*
H53c−0.055270.740580.646500.08700*
H53d0.133010.564600.688100.08600*
H1w0.179300.695500.691100.13000*
H2w0.147500.724290.750000.13000*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.02782 (15)0.04180 (17)0.02709 (16)0.00192 (11)0.00332 (10)0.00246 (11)
Mo20.02996 (15)0.03545 (16)0.02706 (15)0.00194 (11)0.00348 (11)0.00135 (11)
Cl10.0550 (5)0.0798 (7)0.0378 (5)0.0089 (5)0.0059 (4)0.0207 (5)
Cl20.0681 (6)0.0448 (5)0.0424 (5)0.0066 (4)0.0105 (4)0.0108 (4)
O10.0440 (13)0.0474 (14)0.0492 (16)−0.0056 (12)−0.0014 (11)−0.0005 (12)
O20.0472 (13)0.0515 (15)0.0389 (14)−0.0047 (12)0.0008 (11)−0.0033 (11)
O30.0364 (12)0.0438 (12)0.0327 (12)0.0079 (10)0.0077 (10)0.0078 (10)
O1a0.0328 (11)0.0529 (17)0.0351 (13)0.0034 (10)−0.0054 (9)−0.0023 (11)
O1c0.0348 (12)0.0435 (13)0.0384 (15)−0.0077 (10)0.0049 (10)−0.0005 (10)
O1w0.139 (5)0.157 (6)0.064 (3)−0.019 (5)−0.007 (3)−0.032 (3)
O2a0.071 (2)0.0570 (19)0.088 (3)−0.0032 (17)−0.036 (2)−0.0100 (17)
O2c0.095 (3)0.157 (5)0.052 (2)−0.078 (3)0.013 (2)−0.035 (3)
N1a0.0359 (15)0.058 (2)0.0343 (16)0.0101 (14)0.0017 (12)−0.0037 (14)
N1b0.0367 (14)0.0422 (16)0.0353 (16)0.0013 (11)0.0000 (12)−0.0010 (13)
N1c0.0324 (14)0.0445 (16)0.0324 (16)0.0012 (12)0.0051 (12)−0.0025 (12)
N1d0.0345 (13)0.0441 (17)0.0304 (14)−0.0014 (12)0.0043 (11)0.0039 (13)
N2a0.0309 (14)0.058 (2)0.0321 (16)0.0020 (13)0.0027 (11)−0.0023 (13)
N2b0.0314 (13)0.0442 (16)0.0288 (14)0.0031 (12)0.0003 (11)−0.0010 (11)
N2c0.0349 (15)0.0454 (16)0.0318 (15)0.0022 (12)0.0000 (12)−0.0009 (12)
N2d0.0288 (13)0.0392 (16)0.0350 (14)−0.0010 (11)0.0024 (11)0.0024 (11)
C10.0377 (16)0.0495 (19)0.0328 (17)0.0045 (15)−0.0019 (14)−0.0028 (16)
C20.0385 (18)0.052 (2)0.0344 (19)−0.0014 (16)−0.0013 (14)−0.0053 (16)
C30.0345 (16)0.0440 (19)0.0304 (17)0.0019 (14)0.0025 (13)0.0002 (13)
C40.0388 (18)0.053 (2)0.036 (2)−0.0095 (16)−0.0013 (16)−0.0028 (16)
C1a0.0338 (19)0.083 (3)0.034 (2)0.002 (2)0.0060 (15)0.0015 (18)
C1b0.0322 (16)0.052 (2)0.0278 (16)−0.0040 (15)−0.0030 (13)−0.0007 (14)
C1c0.0352 (18)0.0388 (18)0.051 (2)0.0031 (14)−0.0012 (16)−0.0002 (15)
C1d0.0305 (16)0.0362 (17)0.049 (2)−0.0019 (14)0.0036 (15)0.0045 (14)
C2a0.039 (2)0.088 (3)0.037 (2)0.010 (2)0.0073 (15)−0.005 (2)
C2b0.050 (2)0.060 (2)0.0324 (18)−0.0022 (18)−0.0069 (16)0.0076 (17)
C2c0.038 (2)0.047 (2)0.052 (2)0.0073 (16)0.0064 (17)0.0044 (16)
C2d0.052 (2)0.0403 (19)0.053 (2)−0.0022 (17)0.0102 (18)0.0125 (16)
C3a0.042 (2)0.079 (3)0.0312 (18)0.017 (2)0.0004 (15)−0.0078 (19)
C3b0.0430 (18)0.047 (2)0.039 (2)−0.0044 (16)−0.0104 (15)0.0078 (16)
C3c0.0371 (18)0.0363 (17)0.050 (2)0.0014 (14)0.0108 (16)−0.0035 (15)
C3d0.047 (2)0.052 (2)0.038 (2)−0.0036 (16)0.0045 (15)0.0154 (16)
C4a0.041 (2)0.092 (4)0.060 (3)−0.011 (2)0.0163 (19)0.011 (2)
C4b0.0418 (18)0.057 (2)0.0317 (17)0.0051 (16)−0.0026 (14)−0.0077 (16)
C4c0.046 (2)0.065 (3)0.051 (2)0.0140 (18)−0.0073 (17)0.005 (2)
C4d0.046 (2)0.0378 (18)0.060 (2)−0.0017 (15)0.0043 (17)−0.0061 (16)
C5a0.063 (3)0.076 (3)0.059 (3)0.023 (2)0.004 (2)−0.015 (2)
C5b0.069 (3)0.049 (2)0.060 (3)0.000 (2)−0.014 (2)0.007 (2)
C5c0.059 (2)0.060 (2)0.050 (2)0.013 (2)0.012 (2)−0.0029 (19)
C5d0.089 (4)0.070 (3)0.038 (2)−0.004 (2)0.004 (2)0.011 (2)

Geometric parameters (Å, °)

Mo1—Cl12.3594 (11)C1d—C2d1.383 (6)
Mo1—O11.675 (3)C1d—C4d1.506 (6)
Mo1—O1a2.151 (3)C2a—C3a1.367 (8)
Mo1—O31.865 (3)C2b—C3b1.377 (6)
Mo1—N2a2.225 (3)C2c—C3c1.373 (6)
Mo1—N2b2.201 (3)C2d—C3d1.370 (6)
Mo2—Cl22.3759 (11)C3—C41.548 (5)
Mo2—O1c2.150 (3)C3a—C5a1.493 (9)
Mo2—O21.674 (3)C3b—C5b1.482 (6)
Mo2—O31.861 (3)C3c—C5c1.495 (6)
Mo2—N2c2.232 (3)C3d—C5d1.486 (6)
Mo2—N2d2.190 (3)C1—H11.0305
O1a—C21.270 (5)C2a—H2a0.9504
O1c—C41.277 (5)C2b—H2b0.9942
O2a—C21.215 (6)C2c—H2c0.9962
O2c—C41.188 (7)C2d—H2d0.9547
O1w—H1w1.0150C3—H30.9575
O1w—H2w1.0035C4a—H42a0.9558
N1a—N2a1.369 (5)C4a—H41a0.9225
N1a—C3a1.365 (6)C4a—H43a0.9628
N1a—C11.460 (5)C4b—H42b0.9597
N1b—C3b1.353 (5)C4b—H43b0.9591
N1b—N2b1.374 (5)C4b—H41b0.9558
N1b—C11.452 (5)C4c—H43c0.9619
N1c—C31.449 (4)C4c—H41c0.9574
N1c—N2c1.371 (4)C4c—H42c0.9574
N1c—C3c1.357 (5)C4d—H43d0.9603
N1d—C31.454 (5)C4d—H42d0.9611
N1d—N2d1.375 (4)C4d—H41d0.9550
N1d—C3d1.362 (5)C5a—H52a0.9627
N2a—C1a1.342 (5)C5a—H51a0.9562
N2b—C1b1.334 (5)C5a—H53a0.9595
N2c—C1c1.341 (5)C5b—H52b0.9529
N2d—C1d1.331 (5)C5b—H51b0.8946
C1—C21.548 (5)C5b—H53b0.9617
C1a—C2a1.397 (8)C5c—H52c0.9562
C1a—C4a1.495 (9)C5c—H53c0.9615
C1b—C2b1.394 (6)C5c—H51c0.9604
C1b—C4b1.493 (6)C5d—H53d0.9590
C1c—C4c1.481 (6)C5d—H51d0.9547
C1c—C2c1.393 (6)C5d—H52d0.9591
Cl1—Mo1—O1102.86 (10)N1c—C3—N1d111.2 (3)
Cl1—Mo1—O1a86.99 (8)N1c—C3—C4108.9 (3)
Cl1—Mo1—O391.92 (8)N1d—C3—C4110.4 (3)
Cl1—Mo1—N2a89.88 (9)N1a—C3a—C5a122.7 (5)
Cl1—Mo1—N2b164.08 (9)C2a—C3a—C5a131.0 (5)
O1—Mo1—O1a164.75 (12)N1a—C3a—C2a106.3 (5)
O1—Mo1—O3102.98 (13)N1b—C3b—C2b106.2 (4)
O1—Mo1—N2a89.99 (13)C2b—C3b—C5b129.5 (4)
O1—Mo1—N2b90.29 (13)N1b—C3b—C5b124.2 (4)
O1a—Mo1—O388.09 (11)N1c—C3c—C2c106.0 (4)
O1a—Mo1—N2a78.28 (11)C2c—C3c—C5c130.9 (4)
O1a—Mo1—N2b78.40 (11)N1c—C3c—C5c123.1 (4)
O3—Mo1—N2a166.14 (12)N1d—C3d—C2d105.9 (4)
O3—Mo1—N2b93.85 (11)N1d—C3d—C5d123.3 (4)
N2a—Mo1—N2b81.07 (12)C2d—C3d—C5d130.8 (4)
Cl2—Mo2—O1c87.09 (8)O1c—C4—O2c127.2 (5)
Cl2—Mo2—O2102.51 (10)O1c—C4—C3113.7 (3)
Cl2—Mo2—O391.01 (9)O2c—C4—C3119.1 (4)
Cl2—Mo2—N2c90.35 (9)N1b—C1—H1104.45
Cl2—Mo2—N2d164.48 (9)C2—C1—H1108.26
O1c—Mo2—O2165.25 (12)N1a—C1—H1113.94
O1c—Mo2—O388.02 (10)C3a—C2a—H2a126.42
O1c—Mo2—N2c78.09 (10)C1a—C2a—H2a126.24
O1c—Mo2—N2d78.60 (11)C1b—C2b—H2b122.36
O2—Mo2—O3102.81 (13)C3b—C2b—H2b129.79
O2—Mo2—N2c90.54 (13)C1c—C2c—H2c130.32
O2—Mo2—N2d90.45 (13)C3c—C2c—H2c121.57
O3—Mo2—N2c165.95 (11)C3d—C2d—H2d126.20
O3—Mo2—N2d94.44 (11)C1d—C2d—H2d126.32
N2c—Mo2—N2d80.90 (11)N1c—C3—H3108.73
Mo1—O1a—C2129.3 (3)N1d—C3—H3108.72
Mo2—O1c—C4129.7 (3)C4—C3—H3108.91
Mo1—O3—Mo2178.31 (16)C1a—C4a—H41a110.40
H1w—O1w—H2w91.84C1a—C4a—H42a109.25
N2a—N1a—C3a110.9 (4)H41a—C4a—H42a109.66
C1—N1a—C3a129.4 (4)H41a—C4a—H43a109.05
N2a—N1a—C1119.7 (3)H42a—C4a—H43a109.60
N2b—N1b—C3b111.1 (3)C1a—C4a—H43a108.86
C1—N1b—C3b129.7 (3)C1b—C4b—H41b107.16
N2b—N1b—C1119.2 (3)C1b—C4b—H43b112.61
N2c—N1c—C3119.4 (3)H41b—C4b—H42b107.30
C3—N1c—C3c129.5 (3)C1b—C4b—H42b112.56
N2c—N1c—C3c111.1 (3)H42b—C4b—H43b109.56
N2d—N1d—C3119.7 (3)H41b—C4b—H43b107.35
C3—N1d—C3d129.6 (3)C1c—C4c—H41c109.67
N2d—N1d—C3d110.7 (3)C1c—C4c—H42c109.21
Mo1—N2a—N1a120.4 (2)H41c—C4c—H42c109.89
Mo1—N2a—C1a133.4 (3)H41c—C4c—H43c109.61
N1a—N2a—C1a106.1 (4)C1c—C4c—H43c108.91
Mo1—N2b—N1b121.3 (2)H42c—C4c—H43c109.54
Mo1—N2b—C1b132.7 (3)C1d—C4d—H42d110.26
N1b—N2b—C1b106.0 (3)C1d—C4d—H43d110.22
Mo2—N2c—C1c133.4 (3)H41d—C4d—H42d109.01
N1c—N2c—C1c106.0 (3)H41d—C4d—H43d109.04
Mo2—N2c—N1c120.5 (2)H42d—C4d—H43d109.35
Mo2—N2d—N1d121.1 (2)C1d—C4d—H41d108.93
N1d—N2d—C1d105.9 (3)C3a—C5a—H51a110.11
Mo2—N2d—C1d133.1 (3)C3a—C5a—H52a108.24
N1a—C1—N1b110.4 (3)H51a—C5a—H52a110.31
N1b—C1—C2109.4 (3)H51a—C5a—H53a110.34
N1a—C1—C2110.2 (3)H52a—C5a—H53a109.29
N2a—C1a—C2a109.5 (5)C3a—C5a—H53a108.49
N2a—C1a—C4a122.5 (5)C3b—C5b—H52b110.45
C2a—C1a—C4a128.0 (4)C3b—C5b—H53b109.95
N2b—C1b—C2b109.8 (3)C3b—C5b—H51b105.83
N2b—C1b—C4b122.1 (3)H51b—C5b—H53b109.91
C2b—C1b—C4b128.1 (3)H52b—C5b—H53b109.92
N2c—C1c—C4c121.8 (4)H51b—C5b—H52b110.71
C2c—C1c—C4c128.9 (4)C3c—C5c—H51c107.77
N2c—C1c—C2c109.4 (4)C3c—C5c—H52c112.00
N2d—C1d—C2d110.0 (4)H51c—C5c—H52c107.85
N2d—C1d—C4d121.5 (4)H51c—C5c—H53c107.82
C2d—C1d—C4d128.5 (4)C3c—C5c—H53c111.55
O1a—C2—O2a126.9 (4)H52c—C5c—H53c109.66
O1a—C2—C1114.5 (3)C3d—C5d—H52d110.35
O2a—C2—C1118.6 (4)C3d—C5d—H53d110.59
C1a—C2a—C3a107.3 (4)C3d—C5d—H51d108.87
C1b—C2b—C3b106.9 (4)H51d—C5d—H53d108.74
C1c—C2c—C3c107.5 (4)H52d—C5d—H53d109.62
C1d—C2d—C3d107.5 (4)H51d—C5d—H52d108.63

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1w···O2c1.022.232.889 (8)121
O1w—H2w···Cl2i1.002.423.335 (7)151

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2307).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Burzlaff, N. (2008). Adv. Inorg. Chem.60, 101–165.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6 System University of Western Australia, Australia.
  • Hammes, B. S., Chohan, B. S., Hoffman, J. T., Einwächter, S. & Carrano, C. J. (2004). Inorg. Chem.43, 7800–7806. [PubMed]
  • Heinze, K. & Fischer, A. (2010). Eur. J. Inorg. Chem. pp. 1939–1947.
  • Hille, R. (1996). Chem. Rev.96, 2757–2816. [PubMed]
  • Kitanovski, N., Golobič, A. & Čeh, B. (2006). Inorg. Chem. Commun.9, 296–299.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. & Lara-Sánchez, A. (2004). Dalton Trans. pp. 1499–1510. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Trofimenko, S. (1967). J. Am. Chem. Soc.89, 3170–3177.
  • Wang, H. & Robertson, B. E. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 125–136. New York: Adenine Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography