PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3094.
Published online 2010 November 6. doi:  10.1107/S1600536810044776
PMCID: PMC3011624

2,3-Dibromo-3-(2-bromo­phen­yl)-1-(3-phenyl­sydnon-4-yl)propan-1-one

Abstract

In the title compound [systematic name: 2,3-dibromo-3-(2-bromo­phen­yl)-1-(5-oxido-3-phenyl-1,2,3-oxadiazol-3-ium-4-yl)propan-1-one], C17H11Br3N2O3, the oxadiazole ring is essentially planar, with a maximum deviation of 0.003 (1) Å. The –CHBr–CHBr– chain and bromo­phenyl ring are disordered over two sets of sites with a refined occupany ratio of 0.756 (5):0.244 (5). The central oxadiazole ring makes dihedral angles of 54.07 (11) and 13.76 (18)° with the attached phenyl and the major component of the bromo-substituted benzene rings, respectively. The dihedral angle between the major and minor components of the bromo­phenyl rings is 13.4 (5)°. In the crystal structure, mol­ecules are connected by C—H(...)O hydrogen bonds, forming [010] ribbons.

Related literature

For applications of sydnones, see: Rai et al. (2008 [triangle]); Jyothi et al. (2008 [triangle]). For details of chalcones, see: Rai et al. (2007 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3094-scheme1.jpg

Experimental

Crystal data

  • C17H11Br3N2O3
  • M r = 531.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3094-efi1.jpg
  • a = 29.0105 (16) Å
  • b = 7.2271 (4) Å
  • c = 17.7209 (9) Å
  • β = 102.591 (2)°
  • V = 3626.0 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.69 mm−1
  • T = 100 K
  • 0.41 × 0.17 × 0.12 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.169, T max = 0.503
  • 44623 measured reflections
  • 6547 independent reflections
  • 5223 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.099
  • S = 1.04
  • 6547 reflections
  • 277 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.93 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044776/hb5718sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044776/hb5718Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160). MH thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Sydnones constitute a well-defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activities (Rai et al., 2008). Recently, sydnone derivatives were found to exhibit promising antimicrobial properties (Jyothi et al., 2008). Chalcones were obtained by the base-catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in alcoholic medium employing sodium hydroxide as catalyst at 0–50°C. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones (Rai et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The oxadiazole (N1/N2/O1/C7/C8) ring is essentially planar, with a maximum deviation of 0.003 (1) Å for atom N1. The dibromo-substituted bromophenyl ring is disordered over two sites with a refined occupany ratio of 0.756 (5):0.244 (5). The central oxadiazole (N1/N2/O1/C7/C8) ring makes dihedral angles of 54.07 (11)° and 13.76 (18)° with the attached phenyl (C1–C6) and the bromo-substituted phenyl (C12A–C17A) rings, respectively. The dihedral angle between the major component (C12A–C17A) and the minor component (C12B–C17B) bromophenyl rings is 13.4 (5)°.

In the crystal, (Fig. 2), the molecules are connected by intermolecular C5—H5A···O3, C11A—H11B···O2 and C17A—H17A···O2 (Table 1) hydrogen bonds into ribbons along the b axis.

Experimental

1-(31-Phenylsydnon-41-yl)-3-(o-bromophenyl)-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25–30 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow colour of the bromine persisted. The reaction mixture was stirred at room temperature for 1–2 hours. The solid which separated was filtered, washed with methanol and dried. It was then recrystallized from ethanol. Colourless blocks of (I) were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically [C—H = 0.93 or 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The dibromo substituted bromophenyl ring disordered over two sites with a refined occupany ratio of 0.756 (5):0.244 (5).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids (H atoms are omitted for clarity). Open bonds represent the minor disorder component.
Fig. 2.
The packing of the title compound, showing hydrogen-bonded chains down the b axis.

Crystal data

C17H11Br3N2O3F(000) = 2048
Mr = 531.01Dx = 1.945 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9996 reflections
a = 29.0105 (16) Åθ = 2.4–32.1°
b = 7.2271 (4) ŵ = 6.69 mm1
c = 17.7209 (9) ÅT = 100 K
β = 102.591 (2)°Block, colourless
V = 3626.0 (3) Å30.41 × 0.17 × 0.12 mm
Z = 8

Data collection

Bruker APEXII DUO CCD diffractometer6547 independent reflections
Radiation source: fine-focus sealed tube5223 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −43→43
Tmin = 0.169, Tmax = 0.503k = −10→10
44623 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0647P)2] where P = (Fo2 + 2Fc2)/3
6547 reflections(Δ/σ)max = 0.002
277 parametersΔρmax = 0.71 e Å3
3 restraintsΔρmin = −0.93 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br1A0.18065 (5)0.8649 (3)0.50111 (5)0.0454 (3)0.756 (5)
Br2A0.05273 (10)0.6884 (4)0.31021 (14)0.0294 (3)0.756 (5)
Br1B0.0558 (3)0.7183 (13)0.3102 (5)0.0306 (10)0.244 (5)
Br2B0.18785 (8)0.8021 (5)0.50059 (16)0.0347 (4)0.244 (5)
Br30.025545 (10)0.93718 (3)0.637488 (15)0.04917 (9)
O10.13831 (6)1.30479 (19)0.24590 (9)0.0342 (3)
O20.10960 (7)1.2493 (2)0.35316 (11)0.0456 (4)
O30.17640 (5)0.7134 (2)0.32498 (9)0.0329 (3)
N10.16750 (5)1.0430 (2)0.22747 (8)0.0231 (3)
N20.16194 (6)1.2094 (2)0.19957 (10)0.0295 (3)
C10.16918 (7)0.7495 (3)0.15957 (12)0.0312 (4)
H1A0.13970.71960.16890.037*
C20.19205 (8)0.6312 (3)0.11787 (14)0.0388 (5)
H2A0.17820.51900.09980.047*
C30.23549 (8)0.6801 (3)0.10321 (13)0.0384 (5)
H3A0.25040.60150.07450.046*
C40.25712 (7)0.8466 (3)0.13125 (12)0.0339 (4)
H4A0.28620.87830.12110.041*
C50.23519 (6)0.9649 (3)0.17425 (11)0.0278 (3)
H5A0.24941.07530.19400.033*
C60.19154 (6)0.9134 (2)0.18684 (10)0.0231 (3)
C70.12899 (8)1.1883 (3)0.30537 (13)0.0322 (4)
C80.14869 (6)1.0146 (3)0.29097 (11)0.0262 (3)
C90.15335 (7)0.8457 (3)0.33621 (12)0.0289 (4)
C10A0.12988 (9)0.8495 (3)0.40719 (15)0.0244 (5)0.756 (5)
H10A0.10880.95660.40410.029*0.756 (5)
C11A0.10229 (8)0.6727 (3)0.40790 (13)0.0218 (5)0.756 (5)
H11B0.12310.56800.40380.026*0.756 (5)
C12A0.08001 (10)0.6399 (3)0.47605 (16)0.0222 (5)0.756 (5)
C13A0.06496 (12)0.7851 (4)0.51665 (19)0.0248 (5)0.756 (5)
H13A0.06790.90670.50120.030*0.756 (5)
C14A0.0457 (2)0.7482 (9)0.5796 (3)0.0265 (10)0.756 (5)
C15A0.0414 (2)0.5602 (13)0.6012 (4)0.0318 (16)0.756 (5)
H15A0.02920.53480.64450.038*0.756 (5)
C16A0.05400 (18)0.4211 (8)0.5623 (3)0.0292 (11)0.756 (5)
H16A0.04960.29990.57680.035*0.756 (5)
C17A0.07444 (16)0.4577 (5)0.4975 (3)0.0284 (7)0.756 (5)
H17A0.08390.36070.46990.034*0.756 (5)
C10B0.1119 (3)0.8207 (10)0.3781 (5)0.0198 (14)*0.244 (5)
H10B0.10410.94040.39810.024*0.244 (5)
C11B0.1295 (2)0.6921 (9)0.4440 (4)0.0204 (15)*0.244 (5)
H11A0.13760.57480.42230.024*0.244 (5)
C12B0.0973 (3)0.6488 (10)0.4974 (4)0.0187 (15)*0.244 (5)
C13B0.0797 (3)0.7882 (14)0.5365 (5)0.025 (2)*0.244 (5)
H13B0.08640.91260.53070.030*0.244 (5)
C14B0.0502 (7)0.726 (3)0.5867 (12)0.026 (4)*0.244 (5)
C15B0.0365 (7)0.569 (3)0.6037 (12)0.017 (3)*0.244 (5)
H15B0.01700.54320.63770.020*0.244 (5)
C16B0.0593 (5)0.426 (3)0.5548 (9)0.030 (4)*0.244 (5)
H16B0.05270.30170.56020.036*0.244 (5)
C17B0.0849 (4)0.466 (2)0.5104 (7)0.022 (3)*0.244 (5)
H17B0.09660.37050.48440.027*0.244 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.0404 (4)0.0737 (6)0.02262 (17)−0.0314 (4)0.0079 (2)−0.0057 (3)
Br2A0.0239 (4)0.0422 (8)0.0217 (2)−0.0043 (4)0.0041 (2)−0.0007 (3)
Br1B0.0210 (9)0.041 (2)0.0279 (8)−0.0050 (12)0.0014 (6)0.0034 (10)
Br2B0.0254 (5)0.0484 (11)0.0291 (5)−0.0107 (6)0.0032 (4)0.0032 (7)
Br30.07536 (19)0.03488 (13)0.05149 (15)0.00417 (10)0.04489 (14)−0.00002 (9)
O10.0490 (9)0.0236 (7)0.0339 (8)0.0021 (6)0.0171 (7)0.0043 (5)
O20.0697 (12)0.0275 (7)0.0513 (10)0.0098 (7)0.0387 (9)0.0009 (7)
O30.0340 (7)0.0304 (7)0.0396 (8)0.0090 (5)0.0199 (6)0.0083 (6)
N10.0252 (7)0.0232 (7)0.0221 (7)−0.0027 (5)0.0079 (5)0.0004 (5)
N20.0386 (9)0.0250 (8)0.0275 (8)−0.0013 (6)0.0125 (6)0.0032 (6)
C10.0294 (9)0.0327 (9)0.0333 (10)−0.0048 (7)0.0112 (7)−0.0068 (8)
C20.0440 (11)0.0342 (11)0.0404 (11)−0.0014 (9)0.0142 (9)−0.0093 (9)
C30.0410 (11)0.0443 (12)0.0337 (11)0.0127 (9)0.0167 (9)−0.0035 (9)
C40.0268 (8)0.0454 (12)0.0325 (10)0.0052 (8)0.0132 (7)0.0060 (8)
C50.0245 (8)0.0345 (10)0.0258 (8)−0.0034 (7)0.0084 (6)0.0033 (7)
C60.0238 (7)0.0257 (8)0.0214 (7)−0.0010 (6)0.0086 (6)−0.0011 (6)
C70.0438 (11)0.0204 (8)0.0373 (10)0.0002 (7)0.0197 (9)0.0032 (7)
C80.0299 (8)0.0230 (8)0.0297 (8)−0.0002 (6)0.0156 (7)0.0017 (6)
C90.0324 (9)0.0257 (9)0.0340 (10)0.0018 (7)0.0193 (8)0.0040 (7)
C10A0.0270 (12)0.0253 (11)0.0228 (11)−0.0028 (8)0.0096 (10)−0.0011 (8)
C11A0.0226 (10)0.0221 (10)0.0219 (10)0.0008 (7)0.0074 (8)0.0022 (7)
C12A0.0224 (12)0.0236 (11)0.0219 (11)−0.0012 (8)0.0076 (10)0.0035 (8)
C13A0.0290 (14)0.0215 (12)0.0270 (13)−0.0004 (9)0.0128 (12)0.0039 (9)
C14A0.0311 (19)0.025 (2)0.0270 (19)0.0044 (15)0.0141 (11)0.0063 (14)
C15A0.030 (2)0.040 (3)0.0304 (19)0.0011 (17)0.0159 (16)0.0112 (13)
C16A0.0343 (18)0.0251 (17)0.0322 (18)−0.0033 (12)0.0161 (16)0.0112 (11)
C17A0.0315 (18)0.0239 (14)0.0297 (17)−0.0019 (13)0.0065 (15)0.0032 (12)

Geometric parameters (Å, °)

Br1A—C10A1.971 (3)C10A—C11A1.509 (3)
Br2A—C11A1.998 (4)C10A—H10A0.9800
Br1B—C10B1.947 (12)C11A—C12A1.508 (3)
Br2B—C11B1.940 (8)C11A—H11B0.9800
Br3—C14A1.876 (7)C12A—C17A1.390 (5)
Br3—C14B1.98 (2)C12A—C13A1.395 (4)
O1—N21.366 (2)C13A—C14A1.379 (7)
O1—C71.420 (2)C13A—H13A0.9300
O2—C71.198 (2)C14A—C15A1.424 (12)
O3—C91.208 (2)C15A—C16A1.316 (11)
N1—N21.297 (2)C15A—H15A0.9300
N1—C81.369 (2)C16A—C17A1.427 (7)
N1—C61.450 (2)C16A—H16A0.9300
C1—C61.386 (3)C17A—H17A0.9300
C1—C21.390 (3)C10B—C11B1.493 (10)
C1—H1A0.9300C10B—H10B0.9800
C2—C31.387 (3)C11B—C12B1.502 (10)
C2—H2A0.9300C11B—H11A0.9800
C3—C41.397 (3)C12B—C13B1.383 (12)
C3—H3A0.9300C12B—C17B1.404 (16)
C4—C51.388 (3)C13B—C14B1.44 (3)
C4—H4A0.9300C13B—H13B0.9300
C5—C61.384 (2)C14B—C15B1.26 (4)
C5—H5A0.9300C15B—C16B1.58 (3)
C7—C81.425 (3)C15B—H15B0.9300
C8—C91.450 (3)C16B—C17B1.23 (2)
C9—C10B1.555 (7)C16B—H16B0.9300
C9—C10A1.556 (3)C17B—H17B0.9300
C14A—Br3—C14B6.0 (6)C17A—C12A—C13A120.2 (3)
N2—O1—C7110.39 (14)C17A—C12A—C11A117.6 (3)
N2—N1—C8114.43 (15)C13A—C12A—C11A122.2 (2)
N2—N1—C6116.31 (14)C14A—C13A—C12A120.0 (3)
C8—N1—C6129.25 (15)C14A—C13A—H13A120.0
N1—N2—O1106.03 (14)C12A—C13A—H13A120.0
C6—C1—C2118.03 (18)C13A—C14A—C15A118.5 (6)
C6—C1—H1A121.0C13A—C14A—Br3122.1 (4)
C2—C1—H1A121.0C15A—C14A—Br3119.4 (5)
C3—C2—C1120.1 (2)C16A—C15A—C14A122.5 (7)
C3—C2—H2A120.0C16A—C15A—H15A118.8
C1—C2—H2A120.0C14A—C15A—H15A118.8
C2—C3—C4120.60 (19)C15A—C16A—C17A119.5 (6)
C2—C3—H3A119.7C15A—C16A—H16A120.2
C4—C3—H3A119.7C17A—C16A—H16A120.2
C5—C4—C3120.10 (18)C12A—C17A—C16A119.3 (4)
C5—C4—H4A120.0C12A—C17A—H17A120.4
C3—C4—H4A120.0C16A—C17A—H17A120.4
C6—C5—C4117.87 (18)C11B—C10B—C9106.1 (5)
C6—C5—H5A121.1C11B—C10B—Br1B110.1 (6)
C4—C5—H5A121.1C9—C10B—Br1B112.3 (5)
C5—C6—C1123.31 (17)C11B—C10B—H10B109.4
C5—C6—N1117.53 (16)C9—C10B—H10B109.4
C1—C6—N1119.09 (15)Br1B—C10B—H10B109.4
O2—C7—O1120.04 (17)C10B—C11B—C12B117.9 (6)
O2—C7—C8136.00 (19)C10B—C11B—Br2B105.1 (5)
O1—C7—C8103.93 (16)C12B—C11B—Br2B110.6 (5)
N1—C8—C7105.22 (16)C10B—C11B—H11A107.6
N1—C8—C9125.07 (16)C12B—C11B—H11A107.6
C7—C8—C9129.42 (17)Br2B—C11B—H11A107.6
O3—C9—C8124.29 (17)C13B—C12B—C17B118.1 (9)
O3—C9—C10B120.0 (3)C13B—C12B—C11B120.9 (7)
C8—C9—C10B111.9 (3)C17B—C12B—C11B121.0 (8)
O3—C9—C10A120.18 (18)C12B—C13B—C14B114.6 (12)
C8—C9—C10A115.32 (17)C12B—C13B—H13B122.7
C10B—C9—C10A25.3 (3)C14B—C13B—H13B122.7
C11A—C10A—C9108.56 (19)C15B—C14B—C13B134 (2)
C11A—C10A—Br1A109.92 (18)C15B—C14B—Br3115 (2)
C9—C10A—Br1A107.79 (17)C13B—C14B—Br3111.2 (14)
C11A—C10A—H10A110.2C14B—C15B—C16B105 (2)
C9—C10A—H10A110.2C14B—C15B—H15B127.3
Br1A—C10A—H10A110.2C16B—C15B—H15B127.3
C12A—C11A—C10A117.4 (2)C17B—C16B—C15B126 (2)
C12A—C11A—Br2A110.47 (18)C17B—C16B—H16B117.1
C10A—C11A—Br2A103.15 (19)C15B—C16B—H16B117.1
C12A—C11A—H11B108.5C16B—C17B—C12B122.3 (16)
C10A—C11A—H11B108.5C16B—C17B—H17B118.9
Br2A—C11A—H11B108.5C12B—C17B—H17B118.9
C8—N1—N2—O10.5 (2)Br2A—C11A—C12A—C17A91.6 (3)
C6—N1—N2—O1179.26 (14)C10A—C11A—C12A—C13A29.9 (4)
C7—O1—N2—N1−0.1 (2)Br2A—C11A—C12A—C13A−87.9 (3)
C6—C1—C2—C3−1.4 (3)C17A—C12A—C13A—C14A1.8 (6)
C1—C2—C3—C41.2 (4)C11A—C12A—C13A—C14A−178.6 (4)
C2—C3—C4—C50.0 (3)C12A—C13A—C14A—C15A−0.5 (6)
C3—C4—C5—C6−1.0 (3)C12A—C13A—C14A—Br3179.2 (3)
C4—C5—C6—C10.8 (3)C14B—Br3—C14A—C13A−133 (8)
C4—C5—C6—N1−176.10 (17)C14B—Br3—C14A—C15A46 (8)
C2—C1—C6—C50.3 (3)C13A—C14A—C15A—C16A−1.7 (7)
C2—C1—C6—N1177.24 (19)Br3—C14A—C15A—C16A178.7 (4)
N2—N1—C6—C553.4 (2)C14A—C15A—C16A—C17A2.4 (7)
C8—N1—C6—C5−128.0 (2)C13A—C12A—C17A—C16A−1.2 (5)
N2—N1—C6—C1−123.66 (19)C11A—C12A—C17A—C16A179.3 (3)
C8—N1—C6—C154.9 (3)C15A—C16A—C17A—C12A−1.0 (6)
N2—O1—C7—O2177.9 (2)O3—C9—C10B—C11B42.9 (7)
N2—O1—C7—C8−0.3 (2)C8—C9—C10B—C11B−158.2 (4)
N2—N1—C8—C7−0.7 (2)C10A—C9—C10B—C11B−55.0 (6)
C6—N1—C8—C7−179.25 (18)O3—C9—C10B—Br1B−77.5 (5)
N2—N1—C8—C9−175.01 (18)C8—C9—C10B—Br1B81.5 (5)
C6—N1—C8—C96.4 (3)C10A—C9—C10B—Br1B−175.3 (10)
O2—C7—C8—N1−177.2 (3)C9—C10B—C11B—C12B177.3 (6)
O1—C7—C8—N10.6 (2)Br1B—C10B—C11B—C12B−60.9 (8)
O2—C7—C8—C9−3.2 (4)C9—C10B—C11B—Br2B53.5 (6)
O1—C7—C8—C9174.53 (19)Br1B—C10B—C11B—Br2B175.3 (4)
N1—C8—C9—O33.7 (3)C10B—C11B—C12B—C13B−57.9 (9)
C7—C8—C9—O3−169.2 (2)Br2B—C11B—C12B—C13B63.1 (7)
N1—C8—C9—C10B−154.2 (4)C10B—C11B—C12B—C17B123.5 (8)
C7—C8—C9—C10B32.9 (5)Br2B—C11B—C12B—C17B−115.5 (6)
N1—C8—C9—C10A178.39 (19)C17B—C12B—C13B—C14B0.0 (3)
C7—C8—C9—C10A5.5 (3)C11B—C12B—C13B—C14B−178.7 (8)
O3—C9—C10A—C11A−51.0 (3)C12B—C13B—C14B—C15B0.1 (4)
C8—C9—C10A—C11A134.0 (2)C12B—C13B—C14B—Br3−178.5 (7)
C10B—C9—C10A—C11A46.1 (6)C14A—Br3—C14B—C15B−120 (8)
O3—C9—C10A—Br1A68.0 (2)C14A—Br3—C14B—C13B59 (8)
C8—C9—C10A—Br1A−106.97 (19)C13B—C14B—C15B—C16B−0.1 (6)
C10B—C9—C10A—Br1A165.1 (7)Br3—C14B—C15B—C16B178.4 (8)
C9—C10A—C11A—C12A174.8 (2)C14B—C15B—C16B—C17B0.2 (8)
Br1A—C10A—C11A—C12A57.2 (2)C15B—C16B—C17B—C12B−0.1 (9)
C9—C10A—C11A—Br2A−63.4 (2)C13B—C12B—C17B—C16B0.0 (6)
Br1A—C10A—C11A—Br2A178.89 (13)C11B—C12B—C17B—C16B178.7 (9)
C10A—C11A—C12A—C17A−150.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.463.129 (2)129
C10A—H10A···O20.982.303.060 (3)133
C11A—H11B···O2ii0.982.473.231 (3)134
C17A—H17A···O2ii0.932.483.315 (5)149

Symmetry codes: (i) x, −y, z−1/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5718).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem.43, 2831–2834. [PubMed]
  • Rai, N. S., Kalluraya, B. & Lingappa, B. (2007). Synth. Commun.37, 2267–2273.
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem 43, 1715–1720. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography