PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3246.
Published online 2010 November 20. doi:  10.1107/S1600536810046003
PMCID: PMC3011621

(4-Acetyl­phenolato)(subphthalo­cyaninato)boron(III)

Abstract

In the title compound, C32H19BN6O2, the B atom adopts a BON3 tetra­hedral coordination geometry. In the crystal, pairs of mol­ecules are associated through aromatic π–π stacking inter­actions between the concave faces of the boronsubphthalocyanine fragments at a centroid–centroid distance of 3.4951 (19) Å and a weaker inter­action of the same type between the convex faces of the same group [centroid–centroid separation = 3.5669 (18) Å] also occurs.

Related literature

For related structures and discussion of electronic effects, see: Paton et al. (2010 [triangle]). For further synthetic details, see: Claessens et al. (2002) [triangle]; Zyskowski & Kennedy (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3246-scheme1.jpg

Experimental

Crystal data

  • C32H19BN6O2
  • M r = 530.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3246-efi1.jpg
  • a = 10.5471 (8) Å
  • b = 10.5786 (5) Å
  • c = 11.5375 (9) Å
  • α = 77.446 (4)°
  • β = 88.817 (3)°
  • γ = 83.966 (4)°
  • V = 1249.54 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 K
  • 0.08 × 0.08 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.858, T max = 1.002
  • 8602 measured reflections
  • 4273 independent reflections
  • 2393 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.146
  • S = 0.98
  • 4273 reflections
  • 372 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046003/hb5719sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046003/hb5719Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to acknowledge funding for this research from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

supplementary crystallographic information

Comment

We report the crystal structure of 4-acetylphenoxy-boronsubphthalocyanine (AcPhO-BsubPc), which possesses an electron withdrawing group in the para position of the phenoxy molecular fragment. We have recently reported a study of the crystal structures of a series of para-substituted-phenoxy-BsubPcs in which most of the substituents were alkyl (electron donating) (Paton et al., 2010). Contained within the study was 4-fluorophenoxy-BsubPc (FPhO-BsubPc). While fluorine is moderately electron withdrawing, we did not observe any difference in its crystal structure compared to the baseline phenoxy-BsubPc. Our goal is to study the effect of the placement of strong electron withdrawing groups on the phenoxy molecular fragment and to determine any effect on the crystal structure of the resulting phenoxy-BsubPc. The structure of the current report is described and compared to FPhO-BsubPc, which typifies the phenoxy-BsubPc packing motif. The title compound was prepared by a method described previously (Paton et al., 2010, Claessens et al., 2002), in which chloro-boronsubphthalocyanine (Cl-BsubPc) is reacted with an excess of 4-hydroxy-acetophenone (4-acetylphenol) until substitution is complete. After purification, single crystals suitable for diffraction were grown using vapour diffusion of heptane into a solution of the product in benzene. The molecular structure of the title compound is shown in Fig. 1. The compound shows the expected bowl shape of the BsubPc ligand. The boron-oxygen-carbon (B—O—C) angle in the molecule is 130.3 (2)°; this value differs from both the experimental and computational gas-phase values of B—O—C angle for the typical FPhO-BsubPc, which are significantly smaller, at 115.2 (2)° and around 115°, respectively (Paton et al., 2010). Looking at the torsion angle between the boron, oxygen, and the first two carbon atoms on the phenoxy substituent (B—O—C—C) gives a value of -22.0 (5). In contrast, the angle associated with typical phenoxy-BsubPc is -91.0 (2)° relative to the plane of the BsubPc fragment (Paton et al., 2010). The extended crystal structure of AcPhO-BsubPc (Fig. 2), is typical to that which we have seen for para-alkylphenoxy-BsubPc when the alkyl group was sufficiently large (Paton et al. 2010). Each BsubPc molecular fragment associates with its nearest neighbour through a π-interaction [C18/C19/C20/C21/C22/C23 and C17/C18/C23/C24/N5, (-x, -y, -z)] between concave faces, with a centroid-to-centroid distance of 3.4951 (19) Å. The arrangement of the nearest neighbours is one-dimensional through the crystal parallel to the b axis of the unit cell and resembles something between the dimer arrangement seen for p-H, p-methyl and p-t-butylphenoxy-BsubPc and the ribbon arrangement seen for p-t-octylphenoxy-BsubPc. (Paton et al. 2010) Finally, there is a π-interaction linking adjacent rows between the BsubPc convex faces [C10/C11/C12/C13/C14/C15 and C9/C10/C15/C16/N3, (-x, -y, -z)] at a distance of 3.5669 (18) Å (Fig. 2).

Experimental

Cl-BsubPc, synthesized by a procedure adapted from Zyskowski and Kennedy (2000). The title compound was synthesized using a method adapted from Claessens et al. (2002) and Paton et al. (2010): 4-Acetylphenoxy-boronsubphthalocyanine. Cl-BsubPc (0.510 g, 0.0012 mol) was mixed with 4-hydroxy-acetophenone (4-acetyl-phenol, 0.860 g, 0.0063 mol) in 1,2-dichlorobenzene (10 ml) in a cylindrical vessel fitted with a reflux condenser and argon inlet. The mixture was stirred and heated at reflux under a constant pressure of argon for 17 h. Reaction was determined complete via HPLC by the absence of Cl-BsubPc. The solvent was evaporated under rotary evaporation. The crude product purified on a Kauffman column using standard basic alumina (300 mesh) as the adsorbent and dichloromethane as the eluent. The product elutes from the Kauffman column while the excess phenol remains adsorbed. The dichloromethane was then removed under reduced pressure yielding a dark pink/magenta powder of the title compound (0.215 g, 34%). For further details of the Kauffman apparatus, see: Paton et al. (2010).

Figures

Fig. 1.
The molecular structure of AcPhO-BsubPc with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Extended crystal structure of AcPhO-BsubPc shown from two perspectives (side and end).

Crystal data

C32H19BN6O2Z = 2
Mr = 530.34F(000) = 548
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5471 (8) ÅCell parameters from 8602 reflections
b = 10.5786 (5) Åθ = 2.6–25.0°
c = 11.5375 (9) ŵ = 0.09 mm1
α = 77.446 (4)°T = 150 K
β = 88.817 (3)°Block, magenta
γ = 83.966 (4)°0.08 × 0.08 × 0.05 mm
V = 1249.54 (15) Å3

Data collection

Nonius KappaCCD diffractometer4273 independent reflections
Radiation source: fine-focus sealed tube2393 reflections with I > 2σ(I)
graphiteRint = 0.078
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.6°
[var phi] scans and ω scans with κ offsetsh = −12→12
Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)k = −11→12
Tmin = 0.858, Tmax = 1.002l = −12→13
8602 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.146w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4273 reflectionsΔρmax = 0.23 e Å3
372 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXTL (Version 6.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (19)

Special details

Experimental. (SORTAV; Blessing, 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.84545 (19)0.21044 (17)0.32764 (17)0.0390 (6)
O21.2585 (2)0.5988 (2)0.3568 (2)0.0493 (6)
N10.7983 (2)0.1720 (2)0.1263 (2)0.0334 (6)
N20.7054 (2)−0.0271 (2)0.1944 (2)0.0373 (6)
N30.6430 (2)0.1576 (2)0.2758 (2)0.0342 (6)
N40.5094 (2)0.3473 (2)0.2935 (2)0.0360 (6)
N50.6990 (2)0.3625 (2)0.1770 (2)0.0338 (6)
N60.8102 (2)0.3770 (2)−0.0067 (2)0.0356 (6)
C10.8329 (3)0.2456 (3)0.0194 (3)0.0348 (8)
C20.8656 (3)0.1542 (3)−0.0569 (3)0.0351 (8)
C30.9125 (3)0.1700 (3)−0.1722 (3)0.0416 (8)
H3A0.93290.2524−0.21550.050*
C40.9285 (3)0.0610 (3)−0.2218 (3)0.0448 (9)
H4A0.96390.0685−0.29900.054*
C50.8939 (3)−0.0592 (3)−0.1609 (3)0.0429 (8)
H5A0.9039−0.1313−0.19830.052*
C60.8452 (3)−0.0755 (3)−0.0474 (3)0.0385 (8)
H6A0.8211−0.1574−0.00640.046*
C70.8325 (3)0.0317 (3)0.0055 (3)0.0343 (8)
C80.7819 (3)0.0472 (3)0.1197 (3)0.0348 (8)
C90.6314 (3)0.0325 (3)0.2668 (3)0.0335 (7)
C100.5121 (3)0.0000 (3)0.3263 (2)0.0332 (8)
C110.4524 (3)−0.1143 (3)0.3485 (3)0.0366 (8)
H11A0.4909−0.19050.32560.044*
C120.3356 (3)−0.1134 (3)0.4047 (3)0.0396 (8)
H12A0.2946−0.19110.42350.048*
C130.2768 (3)−0.0006 (3)0.4345 (3)0.0389 (8)
H13A0.1966−0.00300.47350.047*
C140.3323 (3)0.1145 (3)0.4087 (3)0.0368 (8)
H14A0.29010.19170.42680.044*
C150.4514 (3)0.1145 (3)0.3557 (2)0.0320 (7)
C160.5348 (3)0.2169 (3)0.3156 (3)0.0331 (7)
C170.5876 (3)0.4175 (3)0.2165 (3)0.0340 (8)
C180.5647 (3)0.5469 (3)0.1419 (3)0.0341 (8)
C190.4719 (3)0.6503 (3)0.1443 (3)0.0396 (8)
H19A0.40820.64390.20410.048*
C200.4753 (3)0.7628 (3)0.0569 (3)0.0406 (8)
H20A0.41580.83610.05940.049*
C210.5650 (3)0.7704 (3)−0.0351 (3)0.0404 (8)
H21A0.56480.8488−0.09380.048*
C220.6538 (3)0.6665 (3)−0.0425 (3)0.0367 (8)
H22A0.71120.6703−0.10740.044*
C230.6558 (3)0.5557 (3)0.0492 (3)0.0329 (7)
C240.7357 (3)0.4319 (3)0.0686 (3)0.0338 (7)
C250.9382 (3)0.2846 (3)0.3453 (3)0.0343 (8)
C260.9781 (3)0.2682 (3)0.4620 (3)0.0372 (8)
H26A0.93950.20930.52320.045*
C271.0731 (3)0.3366 (3)0.4899 (3)0.0398 (8)
H27A1.10050.32320.57000.048*
C281.1292 (3)0.4251 (3)0.4021 (3)0.0338 (7)
C291.0886 (3)0.4412 (3)0.2854 (3)0.0361 (8)
H29A1.12620.50140.22450.043*
C300.9946 (3)0.3714 (3)0.2561 (3)0.0366 (8)
H30A0.96890.38280.17580.044*
C311.2310 (3)0.5024 (3)0.4297 (3)0.0406 (8)
C321.2969 (4)0.4619 (3)0.5468 (3)0.0601 (10)
H32A1.36360.51900.55000.090*
H32B1.33550.37180.55720.090*
H32C1.23510.46840.61040.090*
B10.7555 (3)0.2280 (3)0.2299 (3)0.0362 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0413 (13)0.0386 (12)0.0360 (13)−0.0134 (10)−0.0056 (10)−0.0005 (10)
O20.0517 (15)0.0442 (13)0.0549 (16)−0.0146 (11)0.0061 (12)−0.0127 (12)
N10.0343 (15)0.0325 (14)0.0330 (16)−0.0058 (11)0.0030 (12)−0.0054 (12)
N20.0372 (16)0.0352 (14)0.0393 (16)−0.0060 (12)0.0015 (13)−0.0068 (12)
N30.0364 (16)0.0334 (14)0.0334 (15)−0.0067 (12)0.0020 (12)−0.0071 (12)
N40.0418 (16)0.0333 (15)0.0335 (16)−0.0085 (12)0.0027 (13)−0.0067 (12)
N50.0368 (16)0.0335 (14)0.0318 (16)−0.0063 (12)0.0009 (12)−0.0074 (12)
N60.0357 (16)0.0345 (14)0.0376 (16)−0.0065 (12)0.0006 (13)−0.0083 (12)
C10.0325 (18)0.0363 (18)0.0355 (19)−0.0065 (14)0.0010 (15)−0.0062 (15)
C20.0315 (18)0.0375 (18)0.035 (2)−0.0002 (14)−0.0030 (15)−0.0053 (15)
C30.040 (2)0.0448 (19)0.036 (2)−0.0013 (15)0.0007 (16)−0.0017 (16)
C40.045 (2)0.052 (2)0.035 (2)0.0063 (17)−0.0049 (16)−0.0100 (17)
C50.041 (2)0.045 (2)0.044 (2)0.0033 (15)−0.0056 (17)−0.0135 (17)
C60.0305 (19)0.0419 (19)0.042 (2)−0.0021 (14)−0.0051 (16)−0.0079 (16)
C70.0276 (18)0.0376 (18)0.038 (2)−0.0025 (14)−0.0015 (15)−0.0087 (15)
C80.0322 (19)0.0325 (17)0.038 (2)−0.0014 (14)0.0022 (15)−0.0047 (15)
C90.0347 (19)0.0286 (16)0.0363 (19)−0.0027 (14)−0.0040 (15)−0.0049 (14)
C100.0366 (19)0.0342 (17)0.0281 (18)−0.0083 (14)−0.0014 (14)−0.0025 (14)
C110.041 (2)0.0368 (18)0.0319 (19)−0.0070 (15)−0.0025 (16)−0.0067 (14)
C120.046 (2)0.0345 (18)0.039 (2)−0.0126 (15)−0.0011 (16)−0.0058 (15)
C130.0367 (19)0.0419 (19)0.0368 (19)−0.0120 (15)0.0001 (15)−0.0018 (15)
C140.041 (2)0.0347 (17)0.0348 (19)−0.0082 (14)0.0050 (16)−0.0060 (14)
C150.0349 (19)0.0332 (17)0.0281 (18)−0.0083 (14)−0.0031 (14)−0.0045 (14)
C160.038 (2)0.0363 (18)0.0263 (17)−0.0087 (15)−0.0010 (15)−0.0074 (14)
C170.039 (2)0.0368 (18)0.0291 (18)−0.0076 (15)0.0006 (15)−0.0113 (15)
C180.040 (2)0.0302 (17)0.0332 (19)−0.0080 (14)0.0021 (15)−0.0083 (14)
C190.041 (2)0.0389 (19)0.042 (2)−0.0123 (15)0.0013 (16)−0.0111 (16)
C200.037 (2)0.0354 (18)0.051 (2)−0.0053 (14)−0.0063 (17)−0.0103 (16)
C210.044 (2)0.0346 (18)0.041 (2)−0.0085 (16)−0.0061 (17)−0.0025 (15)
C220.0381 (19)0.0377 (18)0.0358 (19)−0.0131 (15)−0.0027 (15)−0.0064 (15)
C230.0374 (19)0.0281 (16)0.0355 (19)−0.0109 (14)0.0002 (15)−0.0083 (14)
C240.0335 (19)0.0382 (18)0.0300 (19)−0.0081 (14)0.0013 (15)−0.0058 (15)
C250.0315 (18)0.0347 (17)0.037 (2)−0.0046 (14)0.0003 (15)−0.0091 (15)
C260.040 (2)0.0438 (18)0.0281 (19)−0.0090 (15)0.0039 (15)−0.0059 (14)
C270.037 (2)0.0471 (19)0.034 (2)−0.0037 (15)−0.0004 (16)−0.0081 (16)
C280.0323 (18)0.0350 (17)0.036 (2)−0.0040 (14)−0.0002 (15)−0.0113 (15)
C290.040 (2)0.0316 (17)0.036 (2)−0.0057 (14)0.0064 (15)−0.0053 (14)
C300.044 (2)0.0359 (17)0.0294 (18)−0.0081 (15)−0.0008 (15)−0.0042 (15)
C310.040 (2)0.0415 (19)0.043 (2)−0.0057 (15)0.0073 (17)−0.0145 (16)
C320.063 (3)0.066 (2)0.058 (3)−0.0208 (19)−0.015 (2)−0.019 (2)
B10.033 (2)0.037 (2)0.037 (2)−0.0075 (17)0.0000 (18)−0.0036 (17)

Geometric parameters (Å, °)

O1—C251.361 (3)C12—C131.394 (4)
O2—C311.229 (3)C12—H12A0.9500
N1—C81.367 (3)C13—C141.377 (4)
N1—C11.373 (3)C13—H13A0.9500
B1—O11.457 (4)C14—C151.386 (4)
B1—N11.487 (4)C14—H14A0.9500
B1—N31.494 (4)C15—C161.458 (4)
B1—N51.487 (4)C17—C181.449 (4)
N2—C91.342 (4)C18—C191.393 (4)
N2—C81.351 (3)C18—C231.418 (4)
N3—C161.364 (4)C19—C201.385 (4)
N3—C91.368 (3)C19—H19A0.9500
N4—C161.346 (3)C20—C211.402 (4)
N4—C171.354 (3)C20—H20A0.9500
N5—C171.371 (4)C21—C221.383 (4)
N5—C241.376 (3)C21—H21A0.9500
N6—C241.343 (4)C22—C231.396 (4)
N6—C11.353 (3)C22—H22A0.9500
C1—C21.454 (4)C23—C241.457 (4)
C2—C31.392 (4)C25—C261.388 (4)
C2—C71.413 (4)C25—C301.391 (4)
C3—C41.388 (4)C26—C271.378 (4)
C3—H3A0.9500C26—H26A0.9500
C4—C51.393 (4)C27—C281.390 (4)
C4—H4A0.9500C27—H27A0.9500
C5—C61.379 (4)C28—C291.390 (4)
C5—H5A0.9500C28—C311.495 (4)
C6—C71.393 (4)C29—C301.386 (4)
C6—H6A0.9500C29—H29A0.9500
C7—C81.447 (4)C30—H30A0.9500
C9—C101.458 (4)C31—C321.490 (5)
C10—C111.395 (4)C32—H32A0.9800
C10—C151.412 (4)C32—H32B0.9800
C11—C121.381 (4)C32—H32C0.9800
C11—H11A0.9500
C25—O1—B1130.3 (2)N4—C16—C15130.5 (3)
C8—N1—C1112.4 (2)N3—C16—C15105.9 (2)
C8—N1—B1122.7 (2)N4—C17—N5122.4 (2)
C1—N1—B1123.5 (2)N4—C17—C18130.3 (3)
C9—N2—C8116.7 (2)N5—C17—C18106.1 (2)
C16—N3—C9113.1 (2)C19—C18—C23120.4 (3)
C16—N3—B1123.2 (2)C19—C18—C17132.4 (3)
C9—N3—B1123.1 (3)C23—C18—C17107.1 (3)
C16—N4—C17116.8 (3)C20—C19—C18118.1 (3)
C17—N5—C24112.3 (2)C20—C19—H19A121.0
C17—N5—B1123.0 (2)C18—C19—H19A121.0
C24—N5—B1123.1 (3)C19—C20—C21121.2 (3)
C24—N6—C1117.2 (2)C19—C20—H20A119.4
N6—C1—N1121.8 (3)C21—C20—H20A119.4
N6—C1—C2130.9 (3)C22—C21—C20121.6 (3)
N1—C1—C2105.8 (2)C22—C21—H21A119.2
C3—C2—C7120.6 (3)C20—C21—H21A119.2
C3—C2—C1132.4 (3)C21—C22—C23117.4 (3)
C7—C2—C1106.9 (3)C21—C22—H22A121.3
C4—C3—C2117.7 (3)C23—C22—H22A121.3
C4—C3—H3A121.2C22—C23—C18121.1 (3)
C2—C3—H3A121.2C22—C23—C24131.3 (3)
C3—C4—C5121.6 (3)C18—C23—C24107.4 (2)
C3—C4—H4A119.2N6—C24—N5122.5 (3)
C5—C4—H4A119.2N6—C24—C23130.7 (3)
C6—C5—C4121.2 (3)N5—C24—C23105.4 (3)
C6—C5—H5A119.4O1—C25—C26115.6 (3)
C4—C5—H5A119.4O1—C25—C30124.9 (3)
C5—C6—C7118.0 (3)C26—C25—C30119.4 (3)
C5—C6—H6A121.0C27—C26—C25120.6 (3)
C7—C6—H6A121.0C27—C26—H26A119.7
C6—C7—C2120.8 (3)C25—C26—H26A119.7
C6—C7—C8131.3 (3)C26—C27—C28120.6 (3)
C2—C7—C8107.8 (3)C26—C27—H27A119.7
N2—C8—N1122.8 (3)C28—C27—H27A119.7
N2—C8—C7129.5 (3)C27—C28—C29118.5 (3)
N1—C8—C7105.8 (2)C27—C28—C31122.0 (3)
N2—C9—N3122.2 (3)C29—C28—C31119.5 (3)
N2—C9—C10131.0 (3)C30—C29—C28121.4 (3)
N3—C9—C10105.3 (3)C30—C29—H29A119.3
C11—C10—C15120.6 (3)C28—C29—H29A119.3
C11—C10—C9131.6 (3)C29—C30—C25119.5 (3)
C15—C10—C9107.6 (2)C29—C30—H30A120.3
C12—C11—C10117.9 (3)C25—C30—H30A120.3
C12—C11—H11A121.1O2—C31—C32120.7 (3)
C10—C11—H11A121.1O2—C31—C28120.2 (3)
C11—C12—C13121.2 (3)C32—C31—C28119.1 (3)
C11—C12—H12A119.4C31—C32—H32A109.5
C13—C12—H12A119.4C31—C32—H32B109.5
C14—C13—C12121.5 (3)H32A—C32—H32B109.5
C14—C13—H13A119.2C31—C32—H32C109.5
C12—C13—H13A119.2H32A—C32—H32C109.5
C13—C14—C15118.1 (3)H32B—C32—H32C109.5
C13—C14—H14A120.9O1—B1—N5118.0 (3)
C15—C14—H14A120.9O1—B1—N1117.1 (3)
C14—C15—C10120.6 (2)N5—B1—N1104.7 (3)
C14—C15—C16132.4 (3)O1—B1—N3107.7 (2)
C10—C15—C16107.0 (3)N5—B1—N3104.0 (3)
N4—C16—N3122.2 (2)N1—B1—N3103.8 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5719).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Claessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev.102, 835–853. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2010). CrystEngComm, doi:10.1039/C0CE00599A.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707–712.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography