PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1682.
Published online 2010 November 27. doi:  10.1107/S1600536810048634
PMCID: PMC3011614

Poly[di-μ2-chlorido-μ2-(1,4-dioxane-κ2 O:O′)-cadmium(II)]

Abstract

In the title complex, [CdCl2(C4H8O2)]n, two different CdII ions are present, one in a general position and one with site symmetry 2. The CdII ions are coordinated by two O atoms from two 1,4-dioxane ligands and four chloride anions in a slightly distorted octa­hedral geometry and is connected to neighboring CdII ions by two bridging chloride anions, generating infinite linear chains along the a axis. These chains are further inter­connected by bridging 1,4-dioxane ligands, affording a three-dimensional network.

Related literature

For background to CdII complexes, see: Liu et al. (2009 [triangle]); Melnik et al. (2009 [triangle]); Paul et al. (2010 [triangle]); Tatsuya et al. (2008 [triangle]); Xu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1682-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C4H8O2)]
  • M r = 271.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1682-efi3.jpg
  • a = 15.145 (2) Å
  • b = 13.8871 (18) Å
  • c = 11.5943 (16) Å
  • β = 102.865 (2)°
  • V = 2377.3 (5) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 3.36 mm−1
  • T = 295 K
  • 0.21 × 0.21 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.500, T max = 0.584
  • 7087 measured reflections
  • 2336 independent reflections
  • 2172 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.105
  • S = 1.06
  • 2336 reflections
  • 123 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048634/vm2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048634/vm2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the Youth Foundation of Nanjing University of Technology (39704011) and the Analysis Center of Nanjing University.

supplementary crystallographic information

Comment

In the past decade, the design and synthesis of novel cadmium(II) complexes have aroused worldwide interest in the fields of crystal engineering and material chemistry (Melnik et al., 2009). This is due to their intriguing structural features and tailor-made applications as functional materials in chemical catalysis (Paul et al., 2010), gas separation and storage (Liu et al., 2009), luminescence (Tatsuya et al., 2008), and ion-exchange (Xu et al., 2009). During our efforts to investigate the assembly of cadmium(II)-organic coordination frameworks, a new polymer, namely [Cd3Cl6(dioxane)3]n, (I), was generated accidentally under normal conditions, and the crystal structure of (I) is described here.

The fundamental building unit of (I) is composed of three CdII centers, six chlorine anions, and three dioxane ligands. Each CdII ion adopts a six-coordinated octahedral geometry by coordination to two oxygen donors from two dioxane molecules with Cd—O distances of 2.366 (3) Å and 2.395 (3) Å, and four chlorine atoms with Cd—Cl distances in the range of 2.5628 (10)–2.6252 (11) Å (Fig. 1). Each dioxane ring possesses a chair configuration and bridges two CdII ions to form an infinite zigzag chain along the [100] direction. Within the zigzag chain, the distance between successive CdII ions is 7.6093 (8) Å, and the closest Cd—Cd separation between the neighboring strands is 3.7460 (5) Å. Notably, each CdII ion is also connected with the neighboring CdII ions by two chlorine anions, thus generating a one-dimensional linear network. These infinite linear chains are further interconnected by bridging dioxane ligands to afford the resulting three-dimensional network (Fig. 2).

Experimental

A mixture of 1,4-bis(triazol-1-yl-methyl)benzene (48.0 mg, 0.2 mmol) and CdCl2.2.5H2O (45.7 mg, 0.2 mmol) was dissolved in the dioxane/H2O (10 ml, 1:1) solvent media with stirring for ca 30 min, and then the resultant colorless solution was filtered. Upon slow evaporation of the filtrate under ambient conditions, block colorless single crystals suitable for X-ray analysis were obtained over a period of two weeks in a yield of 63%. Elemental analysis (%) calcd for C12H24Cd3Cl6O6: C, 17.70; H, 2.97; Found: C, 17.75; H, 2.97.

Refinement

All H atoms bound to C atoms were assigned to calculated positions, with C—H = 0.97 Å, and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) -x + 1/2, -y + 1/2, -z + 1.
Fig. 2.
A diagram of the unit cell packing showing the three-dimensional network structure.

Crystal data

[CdCl2(C4H8O2)]F(000) = 1560
Mr = 271.40Dx = 2.275 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5312 reflections
a = 15.145 (2) Åθ = 2.8–30.3°
b = 13.8871 (18) ŵ = 3.36 mm1
c = 11.5943 (16) ÅT = 295 K
β = 102.865 (2)°Block, colorless
V = 2377.3 (5) Å30.21 × 0.21 × 0.16 mm
Z = 12

Data collection

Bruker APEXII CCD diffractometer2336 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −18→15
Tmin = 0.500, Tmax = 0.584k = −17→17
7087 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.085P)2 + 0.3305P] where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.91 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.330474 (14)0.189847 (18)0.421324 (19)0.02267 (15)
Cd20.50000.27411 (3)0.25000.02297 (16)
C10.3234 (2)0.4003 (3)0.0979 (3)0.0326 (8)
H1A0.27360.37440.12820.039*
H1B0.33630.35590.03910.039*
C20.3835 (3)0.4763 (3)0.2794 (3)0.0301 (8)
H2A0.43650.48320.34350.036*
H2B0.33440.45140.31210.036*
C30.4236 (2)−0.0363 (3)0.4210 (3)0.0285 (8)
H3A0.3812−0.03330.34490.034*
H3B0.4074−0.09090.46420.034*
C40.4829 (2)0.0496 (3)0.5972 (3)0.0299 (8)
H4A0.4685−0.00250.64570.036*
H4B0.47950.10960.63870.036*
C50.2025 (3)−0.0029 (3)0.4581 (3)0.0311 (8)
H5A0.15320.02210.49040.037*
H5B0.2554−0.00970.52250.037*
C60.1427 (3)0.0732 (3)0.2772 (3)0.0339 (9)
H6A0.15520.11780.21860.041*
H6B0.09300.09890.30810.041*
Cl10.35989 (6)0.16305 (8)0.20972 (8)0.0297 (2)
Cl20.47678 (7)0.29108 (8)0.46654 (8)0.0297 (2)
Cl30.30007 (7)0.18952 (6)0.63572 (8)0.0278 (2)
O10.40258 (16)0.41052 (19)0.1933 (2)0.0291 (6)
O20.41779 (16)0.05092 (19)0.4859 (2)0.0307 (6)
O30.22192 (17)0.06271 (19)0.3719 (2)0.0314 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0198 (2)0.0212 (2)0.0288 (2)0.00012 (9)0.00928 (14)−0.00097 (9)
Cd20.0207 (2)0.0212 (3)0.0288 (2)0.0000.00941 (16)0.000
C10.0313 (19)0.032 (2)0.0322 (18)0.0103 (16)0.0017 (15)−0.0036 (16)
C20.0341 (19)0.029 (2)0.0252 (16)0.0101 (16)0.0032 (15)−0.0018 (15)
C30.0250 (18)0.0258 (18)0.0333 (18)0.0023 (15)0.0035 (15)−0.0029 (15)
C40.0287 (18)0.033 (2)0.0264 (16)0.0106 (16)0.0029 (14)−0.0025 (15)
C50.0317 (19)0.036 (2)0.0258 (16)−0.0106 (17)0.0077 (15)0.0006 (15)
C60.036 (2)0.028 (2)0.0342 (19)−0.0066 (17)−0.0002 (16)0.0032 (16)
Cl10.0298 (5)0.0317 (5)0.0299 (4)−0.0078 (4)0.0115 (4)−0.0060 (4)
Cl20.0284 (5)0.0333 (5)0.0285 (5)−0.0085 (4)0.0083 (4)−0.0019 (4)
Cl30.0282 (5)0.0283 (5)0.0291 (5)0.0062 (3)0.0113 (4)0.0015 (3)
O10.0286 (13)0.0291 (15)0.0285 (12)0.0113 (11)0.0043 (10)−0.0019 (11)
O20.0263 (13)0.0311 (15)0.0313 (13)0.0114 (11)−0.0012 (10)−0.0072 (11)
O30.0309 (14)0.0279 (14)0.0319 (13)−0.0110 (12)0.0000 (11)0.0023 (11)

Geometric parameters (Å, °)

Cd1—O22.364 (2)C2—H2B0.9700
Cd1—O32.393 (2)C3—O21.439 (4)
Cd1—Cl3i2.5634 (10)C3—C4iv1.489 (5)
Cd1—Cl22.5775 (10)C3—H3A0.9700
Cd1—Cl12.6158 (10)C3—H3B0.9700
Cd1—Cl32.6269 (10)C4—O21.438 (4)
Cd2—O12.401 (2)C4—C3iv1.489 (5)
Cd2—O1ii2.401 (2)C4—H4A0.9700
Cd2—Cl12.5804 (10)C4—H4B0.9700
Cd2—Cl1ii2.5804 (10)C5—O31.431 (4)
Cd2—Cl2ii2.6222 (10)C5—C1v1.506 (5)
Cd2—Cl22.6222 (10)C5—H5A0.9700
C1—O11.446 (4)C5—H5B0.9700
C1—C5iii1.506 (5)C6—O31.442 (4)
C1—H1A0.9700C6—C2v1.511 (5)
C1—H1B0.9700C6—H6A0.9700
C2—O11.429 (4)C6—H6B0.9700
C2—C6iii1.511 (5)Cl3—Cd1i2.5634 (10)
C2—H2A0.9700
O2—Cd1—O377.28 (9)O1—C2—H2B109.7
O2—Cd1—Cl3i163.70 (7)C6iii—C2—H2B109.7
O3—Cd1—Cl3i88.35 (7)H2A—C2—H2B108.2
O2—Cd1—Cl289.19 (7)O2—C3—C4iv110.4 (3)
O3—Cd1—Cl2164.70 (7)O2—C3—H3A109.6
Cl3i—Cd1—Cl2105.95 (4)C4iv—C3—H3A109.6
O2—Cd1—Cl188.92 (6)O2—C3—H3B109.6
O3—Cd1—Cl185.52 (6)C4iv—C3—H3B109.6
Cl3i—Cd1—Cl197.68 (3)H3A—C3—H3B108.1
Cl2—Cd1—Cl187.14 (3)O2—C4—C3iv111.0 (3)
O2—Cd1—Cl384.39 (6)O2—C4—H4A109.4
O3—Cd1—Cl388.25 (6)C3iv—C4—H4A109.4
Cl3i—Cd1—Cl387.58 (3)O2—C4—H4B109.4
Cl2—Cd1—Cl397.60 (3)C3iv—C4—H4B109.4
Cl1—Cd1—Cl3171.72 (3)H4A—C4—H4B108.0
O1—Cd2—O1ii75.83 (12)O3—C5—C1v110.0 (3)
O1—Cd2—Cl189.52 (7)O3—C5—H5A109.7
O1ii—Cd2—Cl1162.08 (7)C1v—C5—H5A109.7
O1—Cd2—Cl1ii162.08 (7)O3—C5—H5B109.7
O1ii—Cd2—Cl1ii89.52 (7)C1v—C5—H5B109.7
Cl1—Cd2—Cl1ii106.59 (5)H5A—C5—H5B108.2
O1—Cd2—Cl2ii82.66 (6)O3—C6—C2v109.5 (3)
O1ii—Cd2—Cl2ii89.20 (6)O3—C6—H6A109.8
Cl1—Cd2—Cl2ii99.24 (3)C2v—C6—H6A109.8
Cl1ii—Cd2—Cl2ii86.95 (3)O3—C6—H6B109.8
O1—Cd2—Cl289.20 (6)C2v—C6—H6B109.8
O1ii—Cd2—Cl282.66 (6)H6A—C6—H6B108.2
Cl1—Cd2—Cl286.95 (3)Cd2—Cl1—Cd192.87 (3)
Cl1ii—Cd2—Cl299.24 (3)Cd1—Cl2—Cd292.79 (3)
Cl2ii—Cd2—Cl2169.69 (5)Cd1i—Cl3—Cd192.42 (3)
O1—C1—C5iii109.5 (3)C2—O1—C1109.6 (3)
O1—C1—H1A109.8C2—O1—Cd2121.4 (2)
C5iii—C1—H1A109.8C1—O1—Cd2119.1 (2)
O1—C1—H1B109.8C4—O2—C3110.4 (3)
C5iii—C1—H1B109.8C4—O2—Cd1121.2 (2)
H1A—C1—H1B108.2C3—O2—Cd1128.02 (19)
O1—C2—C6iii109.9 (3)C5—O3—C6109.3 (3)
O1—C2—H2A109.7C5—O3—Cd1122.7 (2)
C6iii—C2—H2A109.7C6—O3—Cd1121.3 (2)
O1—Cd2—Cl1—Cd1−85.54 (6)Cl1—Cd2—O1—C1−36.6 (2)
O1ii—Cd2—Cl1—Cd1−50.8 (2)Cl1ii—Cd2—O1—C1117.8 (3)
Cl1ii—Cd2—Cl1—Cd1102.42 (3)Cl2ii—Cd2—O1—C162.8 (2)
Cl2ii—Cd2—Cl1—Cd1−168.02 (3)Cl2—Cd2—O1—C1−123.6 (2)
Cl2—Cd2—Cl1—Cd13.68 (3)C3iv—C4—O2—C357.2 (4)
O2—Cd1—Cl1—Cd2−92.98 (7)C3iv—C4—O2—Cd1−116.2 (3)
O3—Cd1—Cl1—Cd2−170.31 (7)C4iv—C3—O2—C4−56.9 (4)
Cl3i—Cd1—Cl1—Cd2101.97 (4)C4iv—C3—O2—Cd1116.0 (3)
Cl2—Cd1—Cl1—Cd2−3.74 (3)O3—Cd1—O2—C4−137.6 (3)
O2—Cd1—Cl2—Cd292.64 (6)Cl3i—Cd1—O2—C4−108.9 (3)
O3—Cd1—Cl2—Cd265.1 (2)Cl2—Cd1—O2—C449.6 (2)
Cl3i—Cd1—Cl2—Cd2−93.49 (4)Cl1—Cd1—O2—C4136.8 (2)
Cl1—Cd1—Cl2—Cd23.68 (3)Cl3—Cd1—O2—C4−48.1 (2)
Cl3—Cd1—Cl2—Cd2176.87 (3)O3—Cd1—O2—C350.2 (3)
O1—Cd2—Cl2—Cd185.83 (7)Cl3i—Cd1—O2—C378.9 (3)
O1ii—Cd2—Cl2—Cd1161.64 (7)Cl2—Cd1—O2—C3−122.6 (3)
Cl1—Cd2—Cl2—Cd1−3.73 (3)Cl1—Cd1—O2—C3−35.4 (3)
Cl1ii—Cd2—Cl2—Cd1−110.05 (4)Cl3—Cd1—O2—C3139.7 (3)
O2—Cd1—Cl3—Cd1i−165.80 (7)C1v—C5—O3—C660.0 (4)
O3—Cd1—Cl3—Cd1i−88.42 (7)C1v—C5—O3—Cd1−148.7 (2)
Cl3i—Cd1—Cl3—Cd1i0.0C2v—C6—O3—C5−59.7 (4)
Cl2—Cd1—Cl3—Cd1i105.77 (4)C2v—C6—O3—Cd1148.5 (2)
C6iii—C2—O1—C1−59.4 (4)O2—Cd1—O3—C558.0 (3)
C6iii—C2—O1—Cd2155.4 (2)Cl3i—Cd1—O3—C5−114.2 (3)
C5iii—C1—O1—C259.2 (4)Cl2—Cd1—O3—C586.3 (3)
C5iii—C1—O1—Cd2−154.7 (2)Cl1—Cd1—O3—C5147.9 (3)
O1ii—Cd2—O1—C2−64.2 (2)Cl3—Cd1—O3—C5−26.6 (3)
Cl1—Cd2—O1—C2105.4 (3)O2—Cd1—O3—C6−154.0 (3)
Cl1ii—Cd2—O1—C2−100.2 (3)Cl3i—Cd1—O3—C633.8 (3)
Cl2ii—Cd2—O1—C2−155.2 (3)Cl2—Cd1—O3—C6−125.7 (3)
Cl2—Cd2—O1—C218.4 (3)Cl1—Cd1—O3—C6−64.1 (2)
O1ii—Cd2—O1—C1153.8 (3)Cl3—Cd1—O3—C6121.4 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2060).

References

  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Q. K., Ma, J. P. & Dong, Y. B. (2009). Chem. Eur. J. pp. 10364–10368. [PubMed]
  • Melnik, M., Valent, A. & Kohutova, M. (2009). Main Group Met. Chem. pp. 269–295.
  • Paul, A. K., Madras, G. & Natarajan, S. (2010). Dalton Trans. pp. 2263–2279. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tatsuya, K., Masato, N., Yasutaka, T., Koichi, N. & Takumi, K. (2008). Inorg. Chem. pp. 3095–3104. [PubMed]
  • Xu, G. C., Hua, Q., Okamura, T., Bai, Z.-S., Ding, Y.-J., Huang, Y.-Q., Liu, G.-X., Sun, W.-Y. & Ueyama, N. (2009). CrystEngComm, 12, 261–270.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography