PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3125.
Published online 2010 November 10. doi:  10.1107/S1600536810045344
PMCID: PMC3011603

(1S,3R,8S,9R,10S)-2,2-Dichloro-3,7,7,10-tetra­methyl-9,10-ep­oxy­tricyclo­[6.4.0.01,3]dodeca­ne

Abstract

The title compound, C16H24Cl2O, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (cedrus atlantica). The mol­ecule forms an extended sheet of two fused rings which exhibit different conformations. The six-membered ring has a half-chair conformation, while the seven-membered ring displays a chair conformation; the dihedral angle between the two rings is 38.2 (1)°.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968 [triangle]); Plattier & Teiseire (1974 [triangle]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998 [triangle]); Chekroun et al. (2000 [triangle]); El Jamili et al. (2002 [triangle]); Sbai et al. (2002 [triangle]); Dakir et al. (2004 [triangle]). For its biological activity, see: Daoubi et al. (2004 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3125-scheme1.jpg

Experimental

Crystal data

  • C16H24Cl2O
  • M r = 303.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3125-efi1.jpg
  • a = 8.4995 (3) Å
  • b = 10.2461 (4) Å
  • c = 18.1656 (6) Å
  • V = 1581.98 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 298 K
  • 0.67 × 0.41 × 0.26 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008) [triangle] T min = 0.609, T max = 0.745
  • 7171 measured reflections
  • 3369 independent reflections
  • 2830 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 1.01
  • 3369 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack & Bernardinelli (2000 [triangle]), 1423 Friedel pairs
  • Flack parameter: 0.04 (7)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045344/im2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045344/im2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Center of Scientific and Technological Research (CNRST) for support of our scientific research.

supplementary crystallographic information

Comment

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev (1968); Plattier & Teiseire(1974)). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties.(Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8S)-2,2-dichloro-3,7,7,10- tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (X) (El Jamili et al., 2002). Treatement of (X) with one equivalent of meta-chloroperbenzoic acid (mCPBA) leads to a mixture of two diastereisomers: (1S, 3R, 8S, 9S, 10R)-2,2-dichloro-9–10-epoxy-3,7,7,10-tetramethyl- tricyclo[6.4.0.01,3]dodecane (Y) and its isomer (1S, 3R, 8S, 9R, 10S)-2,2-dichloro-9–10-epoxy-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodecane (Z) in an over-all yield of 80% and 30:70 ratio. In a previous work (Sbai et al., 2002), we have determined the structure and the stereochemistry of Y. In this paper we present the absolute configuration of Z established by single-crystal X-ray diffraction analysis. The molecule is built up from two fused six-membered and seven-membered rings (Fig. 1). The six-membered ring has a half chair conformation, as indicated by the total puckering amplitude QT = 0.513 (2) Å and spherical polar angle θ = 125.9 (2)° with [var phi] = 138.1 (4)°, whereas the seven-membered ring displays an aproximate chair conformation with QT = 0.783 (3) Å, θ = 31.9 (3)°, [var phi]2 = -50.3 (4)° and [var phi]3 =-78.3 (2)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli (2000)) as C1(S), C3(R), C8(S), C9(R) and C10(S).

Experimental

For the synthesis of compounds (1S, 3R, 8S, 9S, 10R)-2,2-dichloro-9–10- epoxy-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodecane (Y) and its isomer (1S, 3R, 8S, 9R, 10S)-2,2-dichloro-9–10-epoxy-3,7,7,10- tetramethyl-tricyclo[6.4.0.01,3]dodecane (Z), a stoichiometric quantity of m-chloroperbenzoic acid (m-CPBA) was added to a 100 ml flask containing a solution of (1S,3R,8S)-2,2-dicchloro-3,7,7,10- tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (X) (500 mg, 1.74 mmol) in CH2Cl2 (30 ml). The reaction mixture was stirred at ambient temperature for 2 h, then treated with a 10% solution of sodium hydrogencarbonate. The aqueous phase was extracted with ether and the organic phases were dried and concentrated. Chromatography of the residue on silica (hexane/ethyl acetate 97/3) allowed the isolation of both isomers Y and Z in a pure state. Crystallization of Z was carried out at room temperature from a hexane solution.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl).

Figures

Fig. 1.
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C16H24Cl2OF(000) = 648
Mr = 303.24Dx = 1.273 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3372 reflections
a = 8.4995 (3) Åθ = 2.3–26.9°
b = 10.2461 (4) ŵ = 0.40 mm1
c = 18.1656 (6) ÅT = 298 K
V = 1581.98 (10) Å3Prism, colourless
Z = 40.67 × 0.41 × 0.26 mm

Data collection

Bruker APEXII CCD diffractometer3369 independent reflections
Radiation source: fine-focus sealed tube2830 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 26.9°, θmin = 2.3°
ω and [var phi] scansh = −9→10
Absorption correction: multi-scan (SADABS; Bruker, 2008)k = −13→10
Tmin = 0.609, Tmax = 0.745l = −16→22
7171 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1767P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.22 e Å3
3369 reflectionsΔρmin = −0.29 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.073 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack & Bernardinelli (2000), 1423 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.04 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6413 (2)0.5366 (2)0.38517 (10)0.0356 (4)
C20.5713 (3)0.5121 (2)0.46043 (13)0.0457 (5)
C30.6259 (3)0.3964 (2)0.41628 (12)0.0460 (5)
C40.7701 (3)0.3249 (3)0.44259 (15)0.0630 (7)
H4A0.73750.24450.46630.076*
H4B0.82300.37800.47920.076*
C50.8864 (3)0.2922 (3)0.38160 (18)0.0675 (8)
H5A0.94960.21800.39670.081*
H5B0.82850.26710.33780.081*
C60.9941 (3)0.4052 (3)0.36304 (16)0.0622 (7)
H6A1.07590.37200.33080.075*
H6B1.04510.43220.40830.075*
C70.9253 (3)0.5290 (2)0.32646 (13)0.0464 (5)
C80.8050 (2)0.59920 (19)0.37903 (11)0.0359 (4)
H80.85090.59360.42840.043*
C90.7899 (3)0.7442 (2)0.36270 (12)0.0417 (5)
H90.86870.79900.38710.050*
C100.6401 (3)0.8106 (2)0.34700 (12)0.0472 (5)
C110.4936 (3)0.7314 (2)0.34176 (14)0.0513 (6)
H11A0.42930.76500.30190.062*
H11B0.43440.74080.38710.062*
C120.5260 (3)0.5877 (2)0.32837 (12)0.0438 (5)
H12A0.42840.53890.33140.053*
H12B0.56920.57600.27940.053*
C130.5035 (4)0.3054 (3)0.38394 (17)0.0677 (8)
H13A0.47470.24110.41990.102*
H13B0.54620.26270.34130.102*
H13C0.41210.35470.37010.102*
C141.0652 (3)0.6208 (3)0.31365 (18)0.0665 (8)
H14A1.14440.57640.28550.100*
H14B1.10830.64690.36020.100*
H14C1.03030.69660.28720.100*
C150.8565 (3)0.4933 (3)0.25117 (13)0.0575 (6)
H15A0.81990.57100.22710.086*
H15B0.77020.43400.25770.086*
H15C0.93620.45270.22160.086*
C160.6208 (4)0.9531 (3)0.36539 (17)0.0711 (8)
H16A0.72090.99610.36190.107*
H16B0.58090.96170.41460.107*
H16C0.54840.99240.33140.107*
O0.7511 (2)0.78441 (15)0.28799 (9)0.0529 (4)
Cl10.66972 (9)0.56107 (8)0.54165 (3)0.0691 (2)
Cl20.36713 (8)0.53272 (8)0.47590 (4)0.0698 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0372 (10)0.0357 (10)0.0339 (9)0.0002 (9)0.0019 (9)−0.0013 (8)
C20.0485 (11)0.0517 (13)0.0369 (11)−0.0012 (10)0.0050 (10)0.0004 (10)
C30.0565 (13)0.0393 (12)0.0423 (11)−0.0039 (10)0.0074 (11)0.0030 (9)
C40.0839 (18)0.0461 (14)0.0591 (16)0.0145 (13)0.0087 (14)0.0109 (12)
C50.0754 (18)0.0448 (14)0.0822 (19)0.0203 (13)0.0098 (16)0.0030 (13)
C60.0529 (15)0.0563 (16)0.0774 (17)0.0187 (12)0.0092 (14)−0.0024 (13)
C70.0389 (11)0.0482 (13)0.0521 (12)0.0031 (10)0.0054 (10)−0.0031 (11)
C80.0356 (10)0.0379 (11)0.0342 (10)−0.0006 (9)−0.0059 (9)−0.0004 (8)
C90.0470 (12)0.0384 (11)0.0396 (11)−0.0050 (9)−0.0071 (10)−0.0009 (9)
C100.0595 (14)0.0389 (12)0.0432 (11)0.0053 (10)−0.0069 (11)0.0019 (9)
C110.0449 (13)0.0572 (15)0.0517 (14)0.0121 (11)−0.0082 (11)0.0051 (11)
C120.0353 (11)0.0537 (13)0.0424 (11)−0.0042 (10)−0.0034 (9)−0.0007 (10)
C130.081 (2)0.0477 (14)0.0743 (18)−0.0225 (13)0.0173 (16)−0.0033 (13)
C140.0397 (13)0.0759 (19)0.084 (2)−0.0028 (12)0.0119 (14)0.0010 (15)
C150.0643 (15)0.0617 (15)0.0467 (13)0.0046 (13)0.0106 (12)−0.0106 (11)
C160.095 (2)0.0450 (14)0.0737 (17)0.0165 (14)−0.0216 (17)0.0008 (13)
O0.0632 (11)0.0497 (10)0.0458 (9)−0.0048 (8)−0.0006 (8)0.0107 (8)
Cl10.0888 (5)0.0842 (5)0.0342 (3)0.0068 (4)−0.0030 (3)−0.0063 (3)
Cl20.0547 (4)0.0862 (5)0.0683 (4)−0.0017 (3)0.0248 (3)0.0005 (4)

Geometric parameters (Å, °)

C1—C21.512 (3)C9—O1.456 (3)
C1—C121.517 (3)C9—C101.472 (3)
C1—C81.536 (3)C9—H90.9800
C1—C31.550 (3)C10—O1.453 (3)
C2—C31.505 (3)C10—C111.489 (3)
C2—Cl11.769 (2)C10—C161.507 (3)
C2—Cl21.770 (2)C11—C121.517 (3)
C3—C41.506 (3)C11—H11A0.9700
C3—C131.516 (4)C11—H11B0.9700
C4—C51.522 (4)C12—H12A0.9700
C4—H4A0.9700C12—H12B0.9700
C4—H4B0.9700C13—H13A0.9600
C5—C61.515 (4)C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C71.546 (3)C14—H14B0.9600
C6—H6A0.9700C14—H14C0.9600
C6—H6B0.9700C15—H15A0.9600
C7—C151.532 (3)C15—H15B0.9600
C7—C141.534 (4)C15—H15C0.9600
C7—C81.574 (3)C16—H16A0.9600
C8—C91.521 (3)C16—H16B0.9600
C8—H80.9800C16—H16C0.9600
C2—C1—C12114.70 (17)O—C9—C8118.51 (17)
C2—C1—C8119.45 (17)C10—C9—C8124.23 (19)
C12—C1—C8113.09 (17)O—C9—H9114.5
C2—C1—C358.86 (14)C10—C9—H9114.5
C12—C1—C3120.89 (19)C8—C9—H9114.5
C8—C1—C3119.35 (18)O—C10—C959.71 (14)
C3—C2—C161.81 (14)O—C10—C11113.26 (19)
C3—C2—Cl1121.47 (17)C9—C10—C11118.93 (18)
C1—C2—Cl1121.38 (16)O—C10—C16114.4 (2)
C3—C2—Cl2118.75 (17)C9—C10—C16120.0 (2)
C1—C2—Cl2120.64 (16)C11—C10—C16116.8 (2)
Cl1—C2—Cl2107.30 (12)C10—C11—C12112.81 (18)
C2—C3—C4117.7 (2)C10—C11—H11A109.0
C2—C3—C13118.7 (2)C12—C11—H11A109.0
C4—C3—C13112.5 (2)C10—C11—H11B109.0
C2—C3—C159.33 (14)C12—C11—H11B109.0
C4—C3—C1119.9 (2)H11A—C11—H11B107.8
C13—C3—C1119.2 (2)C1—C12—C11110.06 (18)
C3—C4—C5113.9 (2)C1—C12—H12A109.6
C3—C4—H4A108.8C11—C12—H12A109.6
C5—C4—H4A108.8C1—C12—H12B109.6
C3—C4—H4B108.8C11—C12—H12B109.6
C5—C4—H4B108.8H12A—C12—H12B108.2
H4A—C4—H4B107.7C3—C13—H13A109.5
C6—C5—C4112.7 (2)C3—C13—H13B109.5
C6—C5—H5A109.0H13A—C13—H13B109.5
C4—C5—H5A109.0C3—C13—H13C109.5
C6—C5—H5B109.0H13A—C13—H13C109.5
C4—C5—H5B109.0H13B—C13—H13C109.5
H5A—C5—H5B107.8C7—C14—H14A109.5
C5—C6—C7119.6 (2)C7—C14—H14B109.5
C5—C6—H6A107.4H14A—C14—H14B109.5
C7—C6—H6A107.4C7—C14—H14C109.5
C5—C6—H6B107.4H14A—C14—H14C109.5
C7—C6—H6B107.4H14B—C14—H14C109.5
H6A—C6—H6B107.0C7—C15—H15A109.5
C15—C7—C14107.9 (2)C7—C15—H15B109.5
C15—C7—C6109.4 (2)H15A—C15—H15B109.5
C14—C7—C6106.0 (2)C7—C15—H15C109.5
C15—C7—C8113.74 (18)H15A—C15—H15C109.5
C14—C7—C8108.4 (2)H15B—C15—H15C109.5
C6—C7—C8111.10 (19)C10—C16—H16A109.5
C9—C8—C1110.22 (17)C10—C16—H16B109.5
C9—C8—C7112.54 (18)H16A—C16—H16B109.5
C1—C8—C7116.23 (17)C10—C16—H16C109.5
C9—C8—H8105.6H16A—C16—H16C109.5
C1—C8—H8105.6H16B—C16—H16C109.5
C7—C8—H8105.6C10—O—C960.78 (14)
O—C9—C1059.51 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2241).

References

  • Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem.65, 4431–4434. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun.34, 2001–2008.
  • Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci.60, 927–932. [PubMed]
  • El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett.43, 6645–6648.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
  • Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.
  • Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun.28, 2641–2651.
  • Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.
  • Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography