PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1522–m1523.
Published online 2010 November 6. doi:  10.1107/S1600536810042340
PMCID: PMC3011601

catena-Poly[[[aqua­(pyrazino­[2,3-f][1,10]phenanthroline-κ2 N 8,N 9)zinc(II)]-μ-penta­nedioato] monohydrate]

Abstract

In the title compound, {[Zn(C5H6O4)(C14H8N4)(H2O)]·H2O}n, the Zn2+ ion is coordinated by an N,N′-bidentate pyrazino­[2,3-f][1,10]phenanthroline (pyphen) ligand, a water molecule and a monodentate glutarate (glu) dianion. A symmetry-generated O:O′-bidentate glu dianion completes a distorted cis-ZnN2O4 octa­hedral coordination geometry for the metal ion. The bridging glu species generates [110] polymeric chains in the crystal. O—H(...)O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules help to consolidate the structure and neighbouring pyphen units inter­act through numerous aromatic π–π inter­actions [minimum centroid–centroid separation = 3.654 (3) Å], resulting in a two-dimensional network.

Related literature

For the synthesis of the ligand, see: Dickeson & Summers (1970 [triangle]). For related structures, see: Fang-Wei & Mei (2007 [triangle]); Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1522-scheme1.jpg

Experimental

Crystal data

  • [Zn(C5H6O4)(C14H8N4)(H2O)]·H2O
  • M r = 463.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1522-efi1.jpg
  • a = 6.397 (3) Å
  • b = 9.384 (5) Å
  • c = 16.409 (8) Å
  • α = 98.067 (5)°
  • β = 100.859 (5)°
  • γ = 101.274 (5)°
  • V = 932.5 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.37 mm−1
  • T = 292 K
  • 0.78 × 0.52 × 0.36 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.432, T max = 0.611
  • 8019 measured reflections
  • 3702 independent reflections
  • 2929 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 0.98
  • 3702 reflections
  • 283 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.86 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042340/hb5645sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042340/hb5645Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Baicheng Normal University for supporting this work.

supplementary crystallographic information

Comment

The 1,10-phenanthroline (phen) ligand and its derivatives are important ligands with numerous uses in the construction of metal-organic complexes.Supramolecular architectures baswd on the phen derivative pyrazino[2,3-f][1,10]phenanthroline(PyPhen) molecule have considerably less attention (Li et al.,2006) A s part of our ongoing studies in this area (Fang-Wei & Mei, 2007). We selected glutaric acid (C5H6O42-) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Zn(C14H8N4)(C5H6O4)(H2O).H2O], a new coordinationg polymer, which is reported here. In compound (I), the ZnII atom of unit is surrounded by two N atoms derived from the bidentate PyPhen ligand, three O atoms from two glutaric acid dianions (one monodentate, one bidentate) and one water molecule (Figure 1, Table 1) a distorted octahedral cis-ZnN2O4arrangement is formed. Neighboring ZnII atoms are bridged by the centrosymmetric glutaric acid ligands forming a one-dimensional chain structure (Fig.2). In the crystal structure, adjacent chains are connected through π-π interactions between PyPhen and PyPhen ligands with a minimum centroid -centroid stacking distance of 3.372 Å. O—H···O hydrogen bonds involving the water molecules and carboxylate O atom acceptors (Table 2) complete the structure.

Experimental

The pyphen ligand was synthesized according to the literature method of Dickeson & Summers (1970). A mixture of ZnCl2 (0.3 mmol), pyphen (0.1 mmol) and glutaric acid (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: amaranth (red) blocks of (I) were collected.

Refinement

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C).

Figures

Fig. 1.
view of the local coordination of Zn(II) with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
A view of the two-dimensional supramolecular structure of (I) generated by π-π interactions and hydrogen-bonding.

Crystal data

[Zn(C5H6O4)(C14H8N4)(H2O)]·H2OV = 932.5 (8) Å3
Mr = 463.74Z = 2
Triclinic, P1F(000) = 476
Hall symbol: -P 1Dx = 1.652 Mg m3
a = 6.397 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.384 (5) Åθ = 2.0–26.3°
c = 16.409 (8) ŵ = 1.37 mm1
α = 98.067 (5)°T = 292 K
β = 100.859 (5)°Block, amaranth
γ = 101.274 (5)°0.78 × 0.52 × 0.36 mm

Data collection

Bruker SMART CCD diffractometer3702 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
graphiteRint = 0.062
Detector resolution: 0 pixels mm-1θmax = 26.1°, θmin = 2.3°
ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2002)k = −11→11
Tmin = 0.432, Tmax = 0.611l = −20→20
8019 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: constr
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0464P)2] where P = (Fo2 + 2Fc2)/3
3702 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.71632 (5)0.09770 (4)0.66833 (2)0.02738 (13)
O50.4196 (3)0.1252 (2)0.59395 (14)0.0354 (5)
H5A0.32600.04790.58470.053*
O31.5203 (3)0.8764 (2)0.69454 (14)0.0384 (5)
O41.6651 (3)0.8894 (2)0.58459 (13)0.0367 (5)
OW10.9119 (4)0.1180 (3)0.44343 (17)0.0424 (6)
N20.9708 (4)0.0659 (3)0.76912 (15)0.0270 (5)
N10.6579 (4)0.2190 (3)0.77760 (15)0.0271 (5)
N30.9142 (5)0.3624 (3)1.07957 (17)0.0425 (7)
C41.1058 (5)0.1251 (3)0.92035 (18)0.0290 (7)
N41.2336 (5)0.1937 (3)1.07170 (17)0.0410 (7)
C140.9630 (4)0.1335 (3)0.84604 (18)0.0249 (6)
C80.9326 (5)0.2869 (3)1.00470 (19)0.0325 (7)
C130.7948 (5)0.2178 (3)0.85096 (18)0.0259 (6)
C120.5054 (5)0.2965 (3)0.7799 (2)0.0340 (7)
H12A0.41080.29740.72950.041*
C90.7811 (5)0.2942 (3)0.92828 (19)0.0303 (7)
C51.0920 (5)0.2042 (3)1.00158 (18)0.0327 (7)
C161.1651 (5)0.4264 (3)0.59565 (19)0.0343 (7)
H16A1.07860.42840.54070.041*
H16B1.27420.37090.58650.041*
C191.5487 (5)0.8164 (3)0.6267 (2)0.0323 (7)
C151.0173 (5)0.3451 (3)0.6441 (2)0.0352 (7)
C100.6172 (5)0.3738 (3)0.9281 (2)0.0383 (8)
H10A0.60160.42490.97860.046*
C21.2673 (5)−0.0301 (4)0.8352 (2)0.0376 (8)
H2A1.3682−0.08790.82940.045*
C171.2817 (6)0.5833 (3)0.6374 (2)0.0400 (8)
H17A1.35810.58320.69440.048*
H17B1.17380.64220.64140.048*
C31.2606 (5)0.0399 (3)0.9126 (2)0.0350 (7)
H3B1.35860.03140.96040.042*
C110.4807 (5)0.3765 (4)0.8541 (2)0.0408 (8)
H11A0.37330.43060.85320.049*
C181.4442 (5)0.6551 (3)0.5904 (2)0.0391 (8)
H18A1.55870.60080.59070.047*
H18B1.37010.64680.53210.047*
C11.1200 (5)−0.0139 (3)0.7642 (2)0.0331 (7)
H1A1.1268−0.06100.71130.040*
C71.0537 (6)0.3505 (4)1.1468 (2)0.0487 (9)
H7A1.04750.39991.19920.058*
C61.2114 (6)0.2665 (4)1.1429 (2)0.0490 (10)
H6A1.30450.26211.19290.059*
O20.8998 (3)0.2189 (2)0.60661 (13)0.0366 (5)
O11.0269 (5)0.3952 (3)0.71797 (17)0.0684 (9)
HWBA0.923 (6)0.152 (4)0.492 (2)0.044 (12)*
H5B0.432 (6)0.129 (4)0.534 (2)0.068 (12)*
HWA11.048 (6)0.128 (4)0.446 (2)0.047 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0268 (2)0.0244 (2)0.0289 (2)0.00223 (14)0.00547 (14)0.00410 (14)
O50.0308 (12)0.0365 (13)0.0356 (13)0.0039 (10)0.0020 (10)0.0083 (10)
O30.0386 (13)0.0318 (12)0.0401 (13)0.0035 (10)0.0087 (11)−0.0027 (10)
O40.0349 (12)0.0303 (12)0.0446 (13)−0.0004 (10)0.0136 (11)0.0108 (10)
OW10.0350 (15)0.0536 (16)0.0338 (15)0.0065 (12)0.0050 (12)0.0011 (12)
N20.0261 (13)0.0256 (13)0.0289 (14)0.0040 (11)0.0091 (11)0.0031 (11)
N10.0236 (13)0.0245 (13)0.0328 (14)0.0042 (10)0.0061 (11)0.0065 (11)
N30.0527 (18)0.0371 (16)0.0354 (16)0.0053 (14)0.0122 (14)0.0025 (13)
C40.0263 (16)0.0296 (16)0.0292 (16)0.0021 (13)0.0052 (13)0.0058 (13)
N40.0421 (17)0.0427 (17)0.0339 (16)0.0041 (13)0.0016 (13)0.0101 (13)
C140.0228 (15)0.0236 (15)0.0274 (15)0.0014 (12)0.0060 (12)0.0059 (12)
C80.0378 (18)0.0279 (16)0.0291 (17)0.0018 (14)0.0090 (14)0.0025 (14)
C130.0260 (15)0.0217 (15)0.0292 (16)0.0019 (12)0.0072 (13)0.0053 (13)
C120.0324 (17)0.0325 (17)0.0392 (18)0.0091 (14)0.0075 (14)0.0119 (15)
C90.0323 (17)0.0264 (16)0.0324 (17)0.0042 (13)0.0108 (14)0.0044 (13)
C50.0352 (18)0.0326 (17)0.0276 (16)0.0006 (14)0.0060 (14)0.0078 (14)
C160.0361 (18)0.0279 (16)0.0365 (18)0.0015 (14)0.0083 (14)0.0057 (14)
C190.0267 (16)0.0268 (16)0.0419 (19)0.0029 (13)0.0059 (14)0.0084 (15)
C150.0403 (19)0.0304 (18)0.0350 (19)0.0052 (15)0.0127 (15)0.0048 (15)
C100.0413 (19)0.0342 (18)0.0414 (19)0.0124 (15)0.0142 (16)0.0013 (15)
C20.0313 (17)0.0433 (19)0.046 (2)0.0154 (15)0.0149 (15)0.0145 (16)
C170.049 (2)0.0263 (17)0.0423 (19)−0.0011 (15)0.0166 (17)0.0046 (15)
C30.0296 (17)0.0410 (19)0.0364 (18)0.0103 (15)0.0042 (14)0.0142 (15)
C110.0358 (19)0.0358 (19)0.054 (2)0.0137 (16)0.0122 (17)0.0087 (17)
C180.0419 (19)0.0254 (17)0.047 (2)−0.0010 (15)0.0146 (16)0.0032 (15)
C10.0315 (17)0.0321 (17)0.0377 (18)0.0086 (14)0.0129 (14)0.0045 (14)
C70.066 (3)0.044 (2)0.0270 (18)0.0023 (19)0.0057 (18)−0.0015 (16)
C60.060 (2)0.047 (2)0.0292 (19)−0.0039 (19)−0.0007 (17)0.0064 (17)
O20.0386 (13)0.0284 (12)0.0351 (12)−0.0076 (10)0.0089 (10)0.0017 (10)
O10.087 (2)0.0472 (16)0.0611 (18)−0.0163 (15)0.0381 (17)−0.0080 (14)

Geometric parameters (Å, °)

Zn1—O21.987 (2)C13—C91.394 (4)
Zn1—N12.120 (3)C12—C111.390 (4)
Zn1—O52.137 (2)C12—H12A0.9300
Zn1—O4i2.154 (2)C9—C101.401 (4)
Zn1—N22.188 (2)C16—C151.510 (4)
Zn1—O3i2.347 (2)C16—C171.513 (4)
Zn1—C19i2.588 (3)C16—H16A0.9700
O5—H5A0.8200C16—H16B0.9700
O5—H5B1.00 (4)C19—C181.514 (4)
O3—C191.237 (4)C19—Zn1ii2.588 (3)
O3—Zn1ii2.347 (2)C15—O11.223 (4)
O4—C191.276 (4)C15—O21.272 (4)
O4—Zn1ii2.154 (2)C10—C111.363 (4)
OW1—HWBA0.79 (4)C10—H10A0.9300
OW1—HWA10.85 (4)C2—C31.358 (4)
N2—C11.330 (4)C2—C11.400 (4)
N2—C141.345 (4)C2—H2A0.9300
N1—C121.329 (4)C17—C181.518 (4)
N1—C131.351 (4)C17—H17A0.9700
N3—C71.314 (4)C17—H17B0.9700
N3—C81.367 (4)C3—H3B0.9300
C4—C141.401 (4)C11—H11A0.9300
C4—C31.401 (4)C18—H18A0.9700
C4—C51.459 (4)C18—H18B0.9700
N4—C61.314 (4)C1—H1A0.9300
N4—C51.352 (4)C7—C61.401 (5)
C14—C131.463 (4)C7—H7A0.9300
C8—C51.401 (4)C6—H6A0.9300
C8—C91.452 (4)
O2—Zn1—N1114.24 (9)C15—C16—C17115.5 (3)
O2—Zn1—O592.64 (9)C15—C16—H16A108.4
N1—Zn1—O590.76 (9)C17—C16—H16A108.4
O2—Zn1—O4i96.87 (9)C15—C16—H16B108.4
N1—Zn1—O4i148.89 (9)C17—C16—H16B108.4
O5—Zn1—O4i87.08 (8)H16A—C16—H16B107.5
O2—Zn1—N2100.06 (10)O3—C19—O4120.8 (3)
N1—Zn1—N277.41 (9)O3—C19—C18121.2 (3)
O5—Zn1—N2165.34 (9)O4—C19—C18118.0 (3)
O4i—Zn1—N298.53 (9)O3—C19—Zn1ii64.86 (16)
O2—Zn1—O3i154.65 (8)O4—C19—Zn1ii56.11 (15)
N1—Zn1—O3i91.04 (9)C18—C19—Zn1ii172.5 (2)
O5—Zn1—O3i88.79 (9)O1—C15—O2122.9 (3)
O4i—Zn1—O3i57.90 (8)O1—C15—C16120.1 (3)
N2—Zn1—O3i82.87 (9)O2—C15—C16116.8 (3)
Zn1—O5—H5A109.5C11—C10—C9120.1 (3)
Zn1—O5—H5B111 (2)C11—C10—H10A120.0
H5A—O5—H5B98.4C9—C10—H10A120.0
C19—O3—Zn1ii86.64 (18)C3—C2—C1119.0 (3)
C19—O4—Zn1ii94.44 (19)C3—C2—H2A120.5
HWBA—OW1—HWA196 (3)C1—C2—H2A120.5
C1—N2—C14117.9 (3)C16—C17—C18113.3 (3)
C1—N2—Zn1129.1 (2)C16—C17—H17A108.9
C14—N2—Zn1112.93 (18)C18—C17—H17A108.9
C12—N1—C13118.3 (3)C16—C17—H17B108.9
C12—N1—Zn1126.4 (2)C18—C17—H17B108.9
C13—N1—Zn1115.27 (18)H17A—C17—H17B107.7
C7—N3—C8115.4 (3)C2—C3—C4119.8 (3)
C14—C4—C3117.3 (3)C2—C3—H3B120.1
C14—C4—C5120.3 (3)C4—C3—H3B120.1
C3—C4—C5122.4 (3)C10—C11—C12118.6 (3)
C6—N4—C5115.4 (3)C10—C11—H11A120.7
N2—C14—C4123.1 (3)C12—C11—H11A120.7
N2—C14—C13117.5 (2)C19—C18—C17114.4 (3)
C4—C14—C13119.4 (3)C19—C18—H18A108.7
N3—C8—C5121.1 (3)C17—C18—H18A108.7
N3—C8—C9118.0 (3)C19—C18—H18B108.7
C5—C8—C9120.8 (3)C17—C18—H18B108.7
N1—C13—C9122.5 (3)H18A—C18—H18B107.6
N1—C13—C14116.9 (2)N2—C1—C2122.9 (3)
C9—C13—C14120.6 (3)N2—C1—H1A118.6
N1—C12—C11123.0 (3)C2—C1—H1A118.6
N1—C12—H12A118.5N3—C7—C6122.9 (3)
C11—C12—H12A118.5N3—C7—H7A118.6
C13—C9—C10117.5 (3)C6—C7—H7A118.6
C13—C9—C8119.4 (3)N4—C6—C7122.9 (3)
C10—C9—C8123.1 (3)N4—C6—H6A118.5
N4—C5—C8122.2 (3)C7—C6—H6A118.5
N4—C5—C4118.4 (3)C15—O2—Zn1119.5 (2)
C8—C5—C4119.4 (3)
O2—Zn1—N2—C1−69.5 (3)C14—C13—C9—C8−1.3 (4)
N1—Zn1—N2—C1177.7 (3)N3—C8—C9—C13−179.6 (3)
O5—Zn1—N2—C1140.8 (3)C5—C8—C9—C130.0 (4)
O4i—Zn1—N2—C129.1 (3)N3—C8—C9—C10−0.4 (5)
O3i—Zn1—N2—C185.0 (3)C5—C8—C9—C10179.2 (3)
C19i—Zn1—N2—C157.9 (3)C6—N4—C5—C80.0 (5)
O2—Zn1—N2—C14113.54 (19)C6—N4—C5—C4−179.4 (3)
N1—Zn1—N2—C140.73 (18)N3—C8—C5—N40.5 (5)
O5—Zn1—N2—C14−36.1 (4)C9—C8—C5—N4−179.1 (3)
O4i—Zn1—N2—C14−147.87 (19)N3—C8—C5—C4179.9 (3)
O3i—Zn1—N2—C14−91.94 (19)C9—C8—C5—C40.2 (4)
C19i—Zn1—N2—C14−119.0 (2)C14—C4—C5—N4−179.7 (3)
O2—Zn1—N1—C1282.8 (3)C3—C4—C5—N4−0.4 (5)
O5—Zn1—N1—C12−10.4 (2)C14—C4—C5—C80.9 (4)
O4i—Zn1—N1—C12−96.0 (3)C3—C4—C5—C8−179.8 (3)
N2—Zn1—N1—C12178.3 (3)Zn1ii—O3—C19—O44.3 (3)
O3i—Zn1—N1—C12−99.2 (2)Zn1ii—O3—C19—C18−174.8 (3)
C19i—Zn1—N1—C12−96.7 (3)Zn1ii—O4—C19—O3−4.7 (3)
O2—Zn1—N1—C13−95.7 (2)Zn1ii—O4—C19—C18174.5 (2)
O5—Zn1—N1—C13171.1 (2)C17—C16—C15—O1−13.0 (5)
O4i—Zn1—N1—C1385.5 (3)C17—C16—C15—O2172.8 (3)
N2—Zn1—N1—C13−0.17 (19)C13—C9—C10—C11−1.0 (5)
O3i—Zn1—N1—C1382.3 (2)C8—C9—C10—C11179.8 (3)
C19i—Zn1—N1—C1384.8 (2)C15—C16—C17—C18174.5 (3)
C1—N2—C14—C40.8 (4)C1—C2—C3—C40.8 (5)
Zn1—N2—C14—C4178.2 (2)C14—C4—C3—C20.0 (5)
C1—N2—C14—C13−178.5 (2)C5—C4—C3—C2−179.3 (3)
Zn1—N2—C14—C13−1.2 (3)C9—C10—C11—C121.3 (5)
C3—C4—C14—N2−0.9 (4)N1—C12—C11—C10−0.8 (5)
C5—C4—C14—N2178.4 (3)O3—C19—C18—C178.1 (4)
C3—C4—C14—C13178.4 (3)O4—C19—C18—C17−171.1 (3)
C5—C4—C14—C13−2.2 (4)Zn1ii—C19—C18—C17−133.6 (16)
C7—N3—C8—C5−0.4 (5)C16—C17—C18—C19175.0 (3)
C7—N3—C8—C9179.2 (3)C14—N2—C1—C20.1 (4)
C12—N1—C13—C90.2 (4)Zn1—N2—C1—C2−176.8 (2)
Zn1—N1—C13—C9178.8 (2)C3—C2—C1—N2−0.9 (5)
C12—N1—C13—C14−179.0 (2)C8—N3—C7—C60.0 (5)
Zn1—N1—C13—C14−0.4 (3)C5—N4—C6—C7−0.4 (5)
N2—C14—C13—N11.1 (4)N3—C7—C6—N40.5 (6)
C4—C14—C13—N1−178.3 (3)O1—C15—O2—Zn11.6 (5)
N2—C14—C13—C9−178.1 (3)C16—C15—O2—Zn1175.6 (2)
C4—C14—C13—C92.5 (4)N1—Zn1—O2—C1518.7 (3)
C13—N1—C12—C110.1 (4)O5—Zn1—O2—C15110.7 (2)
Zn1—N1—C12—C11−178.3 (2)O4i—Zn1—O2—C15−161.9 (2)
N1—C13—C9—C100.2 (4)N2—Zn1—O2—C15−61.9 (2)
C14—C13—C9—C10179.4 (3)O3i—Zn1—O2—C15−156.5 (2)
N1—C13—C9—C8179.5 (3)C19i—Zn1—O2—C15−161.8 (2)

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···OW1iii0.821.892.702 (3)173
O5—H5B···O4iv1.00 (4)1.91 (4)2.856 (3)157 (3)
OW1—HWA1···O4v0.85 (4)2.03 (4)2.840 (4)161 (3)
OW1—HWBA···O20.79 (4)1.95 (4)2.733 (4)170 (4)

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5645).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem.23, 1023–1027.
  • Fang-Wei & Mei, Z.-M. (2007). Acta Cryst. E63, m3098–m3099.
  • Li, C.-B., Fang, W., Gao, G.-G. & Liu, B. (2006). Acta Cryst. E62, m1312–m1314.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography