PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1599.
Published online 2010 November 20. doi:  10.1107/S1600536810046830
PMCID: PMC3011599

Poly[dimethyl­ammonium [tris­(μ2-formato-κ2 O:O′)cadmate(II)]]

Abstract

In the coordination polymer, {(C2H8N)[Cd(CHO2)3]}n, the CdII atom lies on a special position of An external file that holds a picture, illustration, etc.
Object name is e-66-m1599-efi1.jpg site symmetry in an octa­hedron of O atoms. The formate unit bridges the metal atoms, generating a three-dimensional polyanionic framework. The disordered cations occupy the cavities within the framework, and are N—H(...)O hydrogen-bonded to the framework.

Related literature

For the tris­(formato)zincate cation, see; Fortier & Creber (1985 [triangle]); Marsh (1986 [triangle]). Tris(formato)cadmate is not isotypic to the aforementioned Zn structures.

An external file that holds a picture, illustration, etc.
Object name is e-66-m1599-scheme1.jpg

Experimental

Crystal data

  • (C2H8N)[Cd(CHO2)3]
  • M r = 293.55
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-m1599-efi2.jpg
  • a = 8.5121 (4) Å
  • c = 23.0022 (9) Å
  • V = 1443.36 (9) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 2.27 mm−1
  • T = 293 K
  • 0.22 × 0.19 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.635, T max = 0.727
  • 4250 measured reflections
  • 370 independent reflections
  • 352 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.055
  • S = 1.09
  • 370 reflections
  • 33 parameters
  • 9 restraints
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046830/hg2747sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046830/hg2747Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903) and the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

For some hydrothermal syntheses involving carboxylic acids, the N,N-dimethylformamide that is used as solvent is partially converted to the dimethylammonium cation, whose charge is balanced by the carboxylate ion. In the present study, the attempt to synthesize a coordination compound of a cadmium carboxylate yielded the tris(formato)cadmate anion (Scheme I). In the salt (Fig. 1), the cadmium atom lies on a special position of 3 site symmetry in an octahedron of O atoms. The formate unit bridges the metal atoms to generate a three-dimensional polyanionic framework, whose cavities are occupied by disordered cations.

A similar tris(formato)zincate(II) has been reported; the compound was synthesized directly from a zinc salt and formic acid in DMF medium (Fortier & Creber, 1985; Marsh, 1986). The later study has assumed the cation to be the formamidine cation, (NH2)CH(NH2)+. Possibly, the cation is the dimethylammonium cation.

Experimental

N,N-Dimethylformamide (10 ml), water (1 ml), ethanol (1 ml), formic acid (0.1 ml), cadmium nitrate (5 mmol), 1,10-phenanthroline (5 mmol) and benzoic acid (5 mmol) were heated in a 23-ml Teflon-lined autoclave at 383 K for 3 days. After slow cooling the autoclave to room temperature, colorless crystals were obtained.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C,N).

The dimethylammonium cation was allowed to refine off the special position; the two N–C distances were restrained to 1.50±0.01 Å and the C···C distance to 2.35±0.01 Å. The anisotropic temperature factors of the carbon atoms were restrained to be nearly isotropic.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of poly[dimethylammonium tris(formato)cadmate] at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C2H8N)[Cd(CHO2)3]Dx = 2.026 Mg m3
Mr = 293.55Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 3921 reflections
Hall symbol: -R 3 2" cθ = 3.3–37.5°
a = 8.5121 (4) ŵ = 2.27 mm1
c = 23.0022 (9) ÅT = 293 K
V = 1443.36 (9) Å3Prism, colorless
Z = 60.22 × 0.19 × 0.15 mm
F(000) = 864

Data collection

Rigaku R-AXIS RAPID diffractometer370 independent reflections
Radiation source: fine-focus sealed tube352 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −11→9
Tmin = 0.635, Tmax = 0.727l = −29→29
4250 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0419P)2 + 0.5666P] where P = (Fo2 + 2Fc2)/3
370 reflections(Δ/σ)max = 0.001
33 parametersΔρmax = 0.73 e Å3
9 restraintsΔρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.00000.00000.00000.02669 (17)
O10.23112 (15)0.21016 (15)0.05612 (5)0.0452 (3)
C10.2265 (2)0.33330.08330.0328 (4)
H1A0.11730.33330.08330.039*
N10.578 (6)0.252 (5)0.0797 (17)0.040 (4)0.167
H1B0.57880.14890.07980.048*0.167
H10.46460.22770.07920.048*0.167
C20.680 (5)0.365 (4)0.0282 (14)0.041 (4)*0.167
H2A0.60610.3181−0.00610.062*0.167
H2B0.78990.36190.02320.062*0.167
H2C0.70790.48810.03440.062*0.167
C30.676 (7)0.364 (4)0.1320 (15)0.041 (4)*0.167
H3A0.62100.29610.16670.062*0.167
H3B0.66870.47320.13220.062*0.167
H3C0.80100.39520.13060.062*0.167

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02630 (19)0.02630 (19)0.0275 (2)0.01315 (10)0.0000.000
O10.0397 (6)0.0420 (6)0.0554 (7)0.0215 (5)−0.0121 (5)−0.0206 (5)
C10.0301 (8)0.0326 (11)0.0367 (10)0.0163 (5)−0.0006 (4)−0.0011 (8)
N10.040 (8)0.028 (6)0.055 (8)0.019 (4)−0.006 (7)0.002 (7)

Geometric parameters (Å, °)

Cd1—O1i2.2841 (10)N1—C31.505 (10)
Cd1—O12.2841 (10)N1—H1B0.8800
Cd1—O1ii2.2841 (10)N1—H10.8800
Cd1—O1iii2.2841 (10)C2—H2A0.9600
Cd1—O1iv2.2841 (10)C2—H2B0.9600
Cd1—O1v2.2841 (10)C2—H2C0.9600
O1—C11.2384 (14)C3—H3A0.9600
C1—O1vi1.2383 (14)C3—H3B0.9600
C1—H1A0.9300C3—H3C0.9600
N1—C21.499 (10)
O1i—Cd1—O1180.00 (5)C2—N1—C3105.3 (8)
O1i—Cd1—O1ii91.20 (4)C2—N1—H1B110.7
O1—Cd1—O1ii88.80 (4)C3—N1—H1B110.7
O1i—Cd1—O1iii91.20 (4)C2—N1—H1110.7
O1—Cd1—O1iii88.80 (4)C3—N1—H1110.7
O1ii—Cd1—O1iii91.20 (4)H1B—N1—H1108.8
O1i—Cd1—O1iv88.80 (4)N1—C2—H2A109.5
O1—Cd1—O1iv91.20 (4)N1—C2—H2B109.5
O1ii—Cd1—O1iv88.80 (4)H2A—C2—H2B109.5
O1iii—Cd1—O1iv180.00 (7)N1—C2—H2C109.5
O1i—Cd1—O1v88.80 (4)H2A—C2—H2C109.5
O1—Cd1—O1v91.20 (4)H2B—C2—H2C109.5
O1ii—Cd1—O1v180.00 (5)N1—C3—H3A109.5
O1iii—Cd1—O1v88.80 (4)N1—C3—H3B109.5
O1iv—Cd1—O1v91.20 (4)H3A—C3—H3B109.5
C1—O1—Cd1124.71 (11)N1—C3—H3C109.5
O1vi—C1—O1125.90 (19)H3A—C3—H3C109.5
O1vi—C1—H1A117.1H3B—C3—H3C109.5
O1—C1—H1A117.1
O1ii—Cd1—O1—C1151.34 (11)O1v—Cd1—O1—C1−28.66 (11)
O1iii—Cd1—O1—C160.11 (7)Cd1—O1—C1—O1vi−174.40 (11)
O1iv—Cd1—O1—C1−119.89 (7)

Symmetry codes: (i) −x, −y, −z; (ii) y, −x+y, −z; (iii) xy, x, −z; (iv) −x+y, −x, z; (v) −y, xy, z; (vi) xy+1/3, −y+2/3, −z+1/6.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.992.84 (7)163

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2747).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Fortier, S. & Creber, K. A. M. (1985). Acta Cryst. C41, 1763–1765.
  • Higashi, T. (1995). ABSCOR Program for Absorption Correction, Tokyo, Japan.
  • Marsh, R. E. (1986). Acta Cryst. C42, 1327–1328.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography