PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3366.
Published online 2010 November 30. doi:  10.1107/S1600536810049469
PMCID: PMC3011595

2-(4-Hy­droxy­phen­oxy)propanoic acid

Abstract

In the title compound, C9H10O4, the carboxyl group is oriented at a dihedral angle of 84.6 (3)° with respect to the benzene ring. In the crystal, mol­ecules are linked via O—H(...)O hydrogen bonds.

Related literature

For the synthesis and applications of the title compound, see: Qin et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3366-scheme1.jpg

Experimental

Crystal data

  • C9H10O4
  • M r = 182.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3366-efi1.jpg
  • a = 6.205 (1) Å
  • b = 11.853 (2) Å
  • c = 6.716 (1) Å
  • β = 114.78 (3)°
  • V = 448.47 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 924 measured reflections
  • 924 independent reflections
  • 829 reflections with I > 2σ(I)
  • R int = 0.018
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.137
  • S = 1.02
  • 924 reflections
  • 121 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049469/xu5075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049469/xu5075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr S. Liu of the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

The title compound, (I), is an important intermediate of the highly active herbicide R-clodinafop-propargyl (Qin et al., 2004). We herein report its crystal structure.

The unit of the title compound, (I), (Fig. 1), contains one molecule and the bond lengths and angles (Table 1) are generally within normal ranges.

As can be seen from the packing diagram (Fig. 2), the intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into three dimensional network, in which they may be effective in the stabilization of the crystal structure. Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

Experimental

The title compound was prepared by the literature method (Qin et al., 2004). The crystals were obtained by dissolving the title compound (0.3 g) in ethanol (50 ml) and evaporating the solvent slowly at room temperature for 15 d.

Refinement

The carboxyl H atom was located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93-0.98 Å and O—H = 0.85 Å, and refined in ride mode with Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxyl H atoms and 1.2Ueq(C) for the other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C9H10O4F(000) = 192
Mr = 182.17Dx = 1.349 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.205 (1) Åθ = 10–13°
b = 11.853 (2) ŵ = 0.11 mm1
c = 6.716 (1) ÅT = 298 K
β = 114.78 (3)°Block, colorless
V = 448.47 (15) Å30.40 × 0.30 × 0.20 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.018
Radiation source: fine-focus sealed tubeθmax = 25.9°, θmin = 3.3°
graphiteh = −7→6
ω/2θ scansk = 0→14
924 measured reflectionsl = 0→8
924 independent reflections3 standard reflections every 200 reflections
829 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.05P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
924 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4177 (6)0.4704 (4)0.2174 (6)0.0527 (10)
H1B0.29180.43360.19400.079*
O20.8378 (5)0.7346 (3)0.9648 (5)0.0431 (9)
O31.0305 (6)0.9182 (3)0.8307 (6)0.0506 (10)
O41.3803 (5)0.8319 (3)0.9703 (6)0.0487 (9)
C10.7253 (9)0.5920 (5)0.4402 (8)0.0473 (13)
H1A0.78720.58760.33600.057*
C20.5225 (8)0.5344 (4)0.4072 (8)0.0381 (11)
C30.4318 (8)0.5400 (4)0.5642 (9)0.0401 (11)
H3A0.29590.49970.54490.048*
C40.5441 (8)0.6055 (4)0.7487 (8)0.0373 (10)
H4A0.48320.60920.85370.045*
C50.7453 (8)0.6655 (5)0.7789 (7)0.0375 (10)
C60.8398 (9)0.6568 (5)0.6261 (8)0.0505 (14)
H6A0.97970.69430.64830.061*
C71.0878 (7)0.7533 (4)1.0603 (7)0.0380 (11)
H7A1.17010.68241.06260.046*
C81.1531 (10)0.7924 (6)1.2920 (8)0.0538 (14)
H8A1.10810.73591.36980.081*
H8B1.07150.86161.28960.081*
H8C1.32140.80471.36430.081*
C91.1595 (7)0.8419 (4)0.9378 (7)0.0362 (10)
H4B1.448 (5)0.883 (3)0.928 (8)0.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0343 (17)0.065 (3)0.059 (2)−0.0158 (18)0.0201 (16)−0.030 (2)
O20.0322 (16)0.055 (2)0.0446 (18)−0.0092 (16)0.0189 (14)−0.0137 (17)
O30.0359 (17)0.050 (2)0.061 (2)0.0072 (17)0.0158 (16)0.0174 (19)
O40.0335 (17)0.048 (2)0.070 (2)0.0068 (17)0.0267 (16)0.0125 (19)
C10.052 (3)0.055 (3)0.048 (3)−0.015 (3)0.034 (2)−0.008 (3)
C20.030 (2)0.036 (2)0.046 (3)0.001 (2)0.015 (2)−0.011 (2)
C30.029 (2)0.035 (2)0.056 (3)−0.002 (2)0.018 (2)0.000 (2)
C40.035 (2)0.041 (3)0.040 (2)0.001 (2)0.0199 (19)−0.001 (2)
C50.033 (2)0.046 (3)0.035 (2)−0.002 (2)0.0162 (18)−0.011 (2)
C60.047 (3)0.064 (4)0.051 (3)−0.025 (3)0.031 (2)−0.011 (3)
C70.031 (2)0.043 (3)0.037 (2)−0.006 (2)0.0114 (18)0.001 (2)
C80.055 (3)0.066 (3)0.039 (3)−0.014 (3)0.019 (2)0.000 (3)
C90.028 (2)0.043 (3)0.035 (2)0.003 (2)0.0115 (17)0.001 (2)

Geometric parameters (Å, °)

O1—C21.389 (6)C3—H3A0.9300
O1—H1B0.8500C4—C51.376 (7)
O2—C51.399 (5)C4—H4A0.9300
O2—C71.426 (5)C5—C61.382 (6)
O3—C91.221 (6)C6—H6A0.9300
O4—C91.300 (5)C7—C81.508 (7)
O4—H4B0.85 (4)C7—C91.511 (6)
C1—C21.366 (6)C7—H7A0.9800
C1—C61.382 (7)C8—H8A0.9600
C1—H1A0.9300C8—H8B0.9600
C2—C31.389 (6)C8—H8C0.9600
C3—C41.378 (7)
C2—O1—H1B119.4C1—C6—C5119.7 (4)
C5—O2—C7117.0 (4)C1—C6—H6A120.2
C9—O4—H4B121 (3)C5—C6—H6A120.2
C2—C1—C6120.9 (4)O2—C7—C8106.5 (4)
C2—C1—H1A119.5O2—C7—C9112.1 (4)
C6—C1—H1A119.5C8—C7—C9109.6 (4)
C1—C2—O1117.8 (4)O2—C7—H7A109.6
C1—C2—C3119.5 (4)C8—C7—H7A109.6
O1—C2—C3122.7 (4)C9—C7—H7A109.6
C4—C3—C2119.8 (4)C7—C8—H8A109.5
C4—C3—H3A120.1C7—C8—H8B109.5
C2—C3—H3A120.1H8A—C8—H8B109.5
C5—C4—C3120.6 (4)C7—C8—H8C109.5
C5—C4—H4A119.7H8A—C8—H8C109.5
C3—C4—H4A119.7H8B—C8—H8C109.5
C4—C5—C6119.5 (4)O3—C9—O4123.4 (4)
C4—C5—O2116.2 (4)O3—C9—C7124.4 (4)
C6—C5—O2124.3 (4)O4—C9—C7112.0 (4)
C6—C1—C2—O1−179.6 (5)C2—C1—C6—C5−1.4 (9)
C6—C1—C2—C3−0.8 (8)C4—C5—C6—C12.9 (9)
C1—C2—C3—C41.5 (7)O2—C5—C6—C1−175.5 (5)
O1—C2—C3—C4−179.8 (5)C5—O2—C7—C8−160.4 (5)
C2—C3—C4—C50.0 (7)C5—O2—C7—C979.9 (6)
C3—C4—C5—C6−2.2 (8)O2—C7—C9—O326.7 (7)
C3—C4—C5—O2176.3 (4)C8—C7—C9—O3−91.3 (6)
C7—O2—C5—C4150.4 (4)O2—C7—C9—O4−157.2 (4)
C7—O2—C5—C6−31.1 (7)C8—C7—C9—O484.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.851.942.733 (6)154
O4—H4B···O1ii0.85 (4)1.84 (4)2.679 (6)166 (4)

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5075).

References

  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Qin, Y.-H., Mo, W.-M., Sun, N. & Wang, W. (2004). Chin. J. Pestic 43, 555–556.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography