PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3049.
Published online 2010 November 6. doi:  10.1107/S1600536810044326
PMCID: PMC3011592

p-Tolyl­methanaminium cyclo­hexane-1,2-diyl phosphate

Abstract

In the title mol­ecular salt, C8H12N+·C6H10O4P, the cation and anion are connected by N—H(...)O hydrogen bonds. The C atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.51 (4):0.49 (4) occupancy ratio to generate two superimposed chair conformations. One of the terminal phosphate O atoms is also disordered in a 0.62 (2):0.38 (2) ratio.

Related literature

For a related structure and background to organic phosphates, see: Gowda et al. (2010 [triangle]). For ring-puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3049-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·C6H10O4P
  • M r = 299.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3049-efi1.jpg
  • a = 5.9642 (6) Å
  • b = 9.6077 (10) Å
  • c = 13.7070 (15) Å
  • α = 78.326 (6)°
  • β = 82.549 (7)°
  • γ = 84.900 (6)°
  • V = 761.11 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 298 K
  • 0.22 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.959, T max = 0.972
  • 9372 measured reflections
  • 3112 independent reflections
  • 1549 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.177
  • S = 0.99
  • 3112 reflections
  • 217 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044326/hb5717sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044326/hb5717Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

As part of our ongoing studies of organic phosphates (Gowda et al., 2010), we now report the structure of the title salt (I) of cyclohexanediol phosphoric acid instead of binol phosphoric acid as compared to earlier report.

The cyclohexane ring is puckered and the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.615 (14) Å and 8.3 (15)° respectively, the q2 and q3 are 0.076 (16) and 0.609 (15) Å, respectively (Cremer & Pople, 1975). Thus, all parameters strongly support the near ideal chair conformation for the cyclohexane ring C9–C14.

The C atoms of the cyclohexane ring are disordered, with a site-occupancy factor of 0.51 (4) for the major component and the O atom attached to the phosphate is also disordered, with a site-occupancy factor of 0.62 (2).

The N atom in the p-tolyl methanammonium cation exhibits a trigonal pyramidal coordinate geometry with three phosphate O atom forming three N—H···O interactions.

Experimental

To an stirred ice cold solution of 0.15 g (1.29 mmol) trans-1,2-cyclohexanediol in 10 ml of dichloromethane under nitrogen atmosphere was added 0.12 ml (1.29 mmol) POCl3 drop wise followed by addition of 3.6 ml (25.8 mmol) triethylamine. White fumes of HCl were observed upon addition, reaction mixture was stirred at 273 K for 30 min. Then 0.8 ml (6.5 mmol) 4-methylbenzylamine was added slowly at 273 K. Reaction mixture was stirred at 273 K for 1 h and warmed up to room temperature and stirred for 48 h. The reaction was monitored using thin layer chromatography. The reaction mixture was then washed with 2 ml of water. The product was extracted using dichloromethane and purified by crystallization in dichloromethane to yield colourless blocks of (I).

Refinement

All H atoms except the nitrogen H atoms were fixed geometrically and allowed to ride on the parent C atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methine C—H = 0.97 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl, methine and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C)

The cyclohexane ring C9–C14 are disordered in two orientations with refined site occupancy of 0.51 (4) and 0.49 (5) respectively. The O atom attached to the phosphate is also disordered, with a site-occupancy factor of 0.62 (2) and 0.38 (3) respectively. Some anisotropic displacement ellipsoids were rather elongated which led us to use the EADP restraints.

Figures

Fig. 1.
View of (I) with atoms represented as 30% probability ellipsoids.
Fig. 2.
The packing diagram showing the N—H···O interactions.

Crystal data

C8H12N+·C6H10O4PZ = 2
Mr = 299.30F(000) = 320
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9642 (6) ÅCell parameters from 1420 reflections
b = 9.6077 (10) Åθ = 2.4–19.6°
c = 13.7070 (15) ŵ = 0.19 mm1
α = 78.326 (6)°T = 298 K
β = 82.549 (7)°Block, colourless
γ = 84.900 (6)°0.22 × 0.20 × 0.15 mm
V = 761.11 (14) Å3

Data collection

Bruker APEXII CCD diffractometer3112 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
graphiteRint = 0.070
[var phi] and ω scansθmax = 27.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −7→6
Tmin = 0.959, Tmax = 0.972k = −12→12
9372 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0845P)2] where P = (Fo2 + 2Fc2)/3
3112 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.1252 (8)0.4020 (5)0.8217 (3)0.0796 (14)
H1A−0.00220.46460.83850.119*
H1B0.20400.36780.87960.119*
H1C0.07310.32280.79990.119*
C20.2837 (6)0.4820 (4)0.7383 (3)0.0494 (10)
C30.2204 (6)0.6086 (4)0.6806 (3)0.0473 (10)
H30.07510.64920.69430.057*
C40.3634 (6)0.6791 (4)0.6024 (3)0.0456 (10)
H40.31410.76550.56470.055*
C50.5811 (6)0.6207 (4)0.5803 (3)0.0388 (9)
C60.6472 (6)0.4933 (4)0.6386 (3)0.0533 (11)
H60.79280.45290.62570.064*
C70.5009 (7)0.4247 (4)0.7160 (3)0.0567 (11)
H70.54920.33820.75390.068*
C80.7453 (6)0.6848 (4)0.4931 (3)0.0519 (10)
H8A0.89790.66400.51180.062*
H8B0.73490.63890.43710.062*
C90.5555 (16)0.0572 (10)0.1899 (7)0.0359 (17)0.511 (5)
H90.62680.09620.23810.043*0.511 (5)
C100.3502 (14)0.1493 (9)0.1592 (7)0.0414 (17)0.511 (5)
H100.27840.11200.11030.050*0.511 (5)
C120.595 (3)0.298 (2)0.0267 (13)0.071 (4)0.511 (5)
H12A0.64950.39200.00120.085*0.511 (5)
H12B0.52330.2705−0.02550.085*0.511 (5)
C130.802 (3)0.189 (3)0.0537 (14)0.071 (4)0.511 (5)
H13A0.90340.1825−0.00680.085*0.511 (5)
H13B0.88490.22240.09970.085*0.511 (5)
C9A0.4735 (15)0.0466 (11)0.1512 (7)0.0359 (17)0.489 (5)
H9A0.36550.04700.10300.043*0.489 (5)
C10A0.4392 (14)0.1751 (10)0.1959 (7)0.0414 (17)0.489 (5)
H10A0.55310.17970.24050.050*0.489 (5)
C12A0.683 (3)0.302 (2)0.0589 (14)0.071 (4)0.489 (5)
H12C0.69780.38420.00480.085*0.489 (5)
H12D0.78960.30700.10570.085*0.489 (5)
C13A0.736 (3)0.168 (3)0.0176 (15)0.071 (4)0.489 (5)
H13C0.88700.1693−0.01830.085*0.489 (5)
H13D0.62910.1636−0.02920.085*0.489 (5)
C110.4260 (7)0.3024 (4)0.1158 (3)0.0682 (13)
H11A0.29610.36560.09680.082*
H11B0.49240.33820.16600.082*
C140.7203 (6)0.0391 (4)0.1023 (3)0.0541 (11)
H14A0.64920.00020.05490.065*
H14B0.8474−0.02520.12340.065*
N10.7087 (6)0.8402 (4)0.4595 (3)0.0508 (9)
O10.4388 (4)−0.0703 (2)0.23999 (19)0.0548 (8)
O20.2054 (4)0.1419 (3)0.2529 (2)0.0667 (9)
O30.2813 (4)−0.0294 (3)0.41168 (19)0.0606 (8)
O40.001 (9)−0.072 (10)0.3026 (15)0.089 (12)0.62 (14)
O4A0.051 (6)−0.119 (3)0.299 (2)0.054 (6)0.38 (14)
P10.22204 (15)−0.01973 (11)0.30949 (8)0.0446 (4)
H3N0.720 (6)0.884 (4)0.512 (3)0.048 (12)*
H2N0.552 (10)0.869 (5)0.440 (4)0.12 (2)*
H1N0.816 (9)0.861 (5)0.405 (4)0.089 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.067 (3)0.085 (3)0.073 (3)−0.026 (2)0.009 (3)0.015 (3)
C20.044 (2)0.053 (2)0.050 (2)−0.0162 (18)0.0016 (19)−0.007 (2)
C30.031 (2)0.054 (2)0.053 (2)−0.0035 (16)0.0041 (18)−0.005 (2)
C40.037 (2)0.042 (2)0.053 (2)−0.0010 (16)0.0000 (18)−0.0012 (18)
C50.0311 (19)0.043 (2)0.043 (2)−0.0065 (15)0.0013 (17)−0.0117 (18)
C60.037 (2)0.055 (3)0.068 (3)0.0015 (18)0.000 (2)−0.015 (2)
C70.060 (3)0.041 (2)0.066 (3)0.0009 (19)−0.009 (2)−0.003 (2)
C80.042 (2)0.062 (3)0.051 (3)−0.0062 (18)0.0028 (19)−0.013 (2)
C90.032 (5)0.039 (3)0.033 (6)−0.005 (4)−0.002 (3)0.001 (4)
C100.024 (4)0.045 (4)0.049 (5)−0.005 (3)−0.002 (3)0.005 (3)
C120.068 (12)0.067 (4)0.060 (11)−0.009 (8)0.005 (6)0.022 (7)
C130.037 (9)0.082 (8)0.076 (12)−0.013 (6)0.013 (6)0.017 (9)
C9A0.032 (5)0.039 (3)0.033 (6)−0.005 (4)−0.002 (3)0.001 (4)
C10A0.024 (4)0.045 (4)0.049 (5)−0.005 (3)−0.002 (3)0.005 (3)
C12A0.068 (12)0.067 (4)0.060 (11)−0.009 (8)0.005 (6)0.022 (7)
C13A0.037 (9)0.082 (8)0.076 (12)−0.013 (6)0.013 (6)0.017 (9)
C110.072 (3)0.046 (2)0.071 (3)0.004 (2)0.012 (2)0.009 (2)
C140.043 (2)0.063 (3)0.047 (2)0.0031 (18)0.0098 (19)−0.002 (2)
N10.036 (2)0.074 (3)0.041 (2)−0.0198 (17)0.0038 (18)−0.005 (2)
O10.0565 (17)0.0393 (15)0.0598 (17)−0.0088 (12)0.0209 (13)−0.0036 (13)
O20.0441 (17)0.0680 (18)0.0662 (19)0.0195 (13)0.0250 (14)0.0087 (15)
O30.0517 (18)0.086 (2)0.0418 (17)−0.0123 (14)−0.0052 (13)−0.0030 (14)
O40.047 (11)0.17 (3)0.047 (6)−0.058 (16)−0.005 (5)0.007 (8)
O4A0.028 (8)0.068 (17)0.071 (11)−0.025 (6)0.007 (6)−0.023 (9)
P10.0272 (5)0.0603 (7)0.0411 (7)−0.0103 (4)0.0019 (4)0.0019 (5)

Geometric parameters (Å, °)

C1—C21.511 (5)C13—C141.55 (2)
C1—H1A0.9600C13—H13A0.9700
C1—H1B0.9600C13—H13B0.9700
C1—H1C0.9600C9A—C10A1.474 (17)
C2—C31.362 (5)C9A—O11.486 (10)
C2—C71.383 (5)C9A—C141.538 (10)
C3—C41.381 (5)C9A—H9A0.9800
C3—H30.9300C10A—C111.473 (10)
C4—C51.390 (5)C10A—O21.534 (8)
C4—H40.9300C10A—H10A0.9800
C5—C61.376 (5)C12A—C13A1.50 (4)
C5—C81.507 (5)C12A—C111.628 (19)
C6—C71.378 (5)C12A—H12C0.9700
C6—H60.9300C12A—H12D0.9700
C7—H70.9300C13A—C141.52 (2)
C8—N11.476 (5)C13A—H13C0.9700
C8—H8A0.9700C13A—H13D0.9700
C8—H8B0.9700C11—H11A0.9700
C9—O11.464 (9)C11—H11B0.9700
C9—C141.478 (9)C14—H14A0.9700
C9—C101.500 (16)C14—H14B0.9700
C9—H90.9800N1—H3N0.92 (4)
C10—O21.445 (8)N1—H2N1.00 (6)
C10—C111.555 (9)N1—H1N0.92 (5)
C10—H100.9800O1—P11.603 (2)
C12—C111.48 (2)O2—P11.590 (3)
C12—C131.58 (3)O3—P11.471 (3)
C12—H12A0.9700O4—P11.471 (17)
C12—H12B0.9700O4A—P11.50 (3)
C2—C1—H1A109.5O2—C10A—H10A112.8
C2—C1—H1B109.5C13A—C12A—C11109.5 (12)
H1A—C1—H1B109.5C13A—C12A—H12C109.8
C2—C1—H1C109.5C11—C12A—H12C109.8
H1A—C1—H1C109.5C13A—C12A—H12D109.8
H1B—C1—H1C109.5C11—C12A—H12D109.8
C3—C2—C7117.3 (3)H12C—C12A—H12D108.2
C3—C2—C1122.7 (4)C12A—C13A—C14110.0 (14)
C7—C2—C1119.9 (4)C12A—C13A—H13C109.7
C2—C3—C4122.6 (3)C14—C13A—H13C109.7
C2—C3—H3118.7C12A—C13A—H13D109.7
C4—C3—H3118.7C14—C13A—H13D109.7
C3—C4—C5119.8 (3)H13C—C13A—H13D108.2
C3—C4—H4120.1C10A—C11—C12114.1 (9)
C5—C4—H4120.1C10A—C11—C1032.9 (4)
C6—C5—C4118.0 (3)C12—C11—C10108.7 (9)
C6—C5—C8118.0 (3)C10A—C11—C12A101.9 (8)
C4—C5—C8123.9 (3)C12—C11—C12A26.9 (7)
C5—C6—C7121.0 (4)C10—C11—C12A112.1 (9)
C5—C6—H6119.5C10A—C11—H11A129.8
C7—C6—H6119.5C12—C11—H11A109.9
C6—C7—C2121.3 (4)C10—C11—H11A109.9
C6—C7—H7119.4C12A—C11—H11A128.1
C2—C7—H7119.4C10A—C11—H11B78.0
N1—C8—C5114.7 (3)C12—C11—H11B109.9
N1—C8—H8A108.6C10—C11—H11B109.9
C5—C8—H8A108.6C12A—C11—H11B84.3
N1—C8—H8B108.6H11A—C11—H11B108.3
C5—C8—H8B108.6C9—C14—C13A115.1 (10)
H8A—C8—H8B107.6C9—C14—C9A30.4 (3)
O1—C9—C14115.2 (7)C13A—C14—C9A105.0 (9)
O1—C9—C1097.5 (6)C9—C14—C13106.8 (9)
C14—C9—C10111.7 (7)C13A—C14—C1327.7 (7)
O1—C9—H9110.6C9A—C14—C13111.9 (9)
C14—C9—H9110.6C9—C14—H14A110.4
C10—C9—H9110.6C13A—C14—H14A82.9
O2—C10—C9102.6 (7)C9A—C14—H14A80.9
O2—C10—C11112.0 (6)C13—C14—H14A110.4
C9—C10—C11107.8 (6)C9—C14—H14B110.4
O2—C10—H10111.4C13A—C14—H14B125.1
C9—C10—H10111.4C9A—C14—H14B129.5
C11—C10—H10111.4C13—C14—H14B110.4
C11—C12—C13111.2 (12)H14A—C14—H14B108.6
C11—C12—H12A109.4C8—N1—H3N109 (2)
C13—C12—H12A109.4C8—N1—H2N112 (3)
C11—C12—H12B109.4H3N—N1—H2N105 (4)
C13—C12—H12B109.4C8—N1—H1N104 (3)
H12A—C12—H12B108.0H3N—N1—H1N116 (4)
C14—C13—C12111.1 (10)H2N—N1—H1N111 (4)
C14—C13—H13A109.4C9—O1—C9A31.2 (3)
C12—C13—H13A109.4C9—O1—P1107.3 (4)
C14—C13—H13B109.4C9A—O1—P1106.5 (4)
C12—C13—H13B109.4C10—O2—C10A33.4 (4)
H13A—C13—H13B108.0C10—O2—P1106.6 (4)
C10A—C9A—O1102.8 (7)C10A—O2—P1107.4 (4)
C10A—C9A—C14107.4 (7)O4—P1—O3115.7 (8)
O1—C9A—C14110.5 (7)O4—P1—O4A20 (3)
C10A—C9A—H9A111.9O3—P1—O4A115.4 (12)
O1—C9A—H9A111.9O4—P1—O2104 (3)
C14—C9A—H9A111.9O3—P1—O2110.38 (16)
C9A—C10A—C11109.4 (8)O4A—P1—O2120.3 (14)
C9A—C10A—O296.3 (6)O4—P1—O1118 (3)
C11—C10A—O2111.6 (6)O3—P1—O1109.49 (16)
C9A—C10A—H10A112.8O4A—P1—O1101.8 (11)
C11—C10A—H10A112.8O2—P1—O196.79 (13)
C7—C2—C3—C40.1 (6)C10—C9—C14—C1363.4 (10)
C1—C2—C3—C4−177.9 (4)C12A—C13A—C14—C930.4 (14)
C2—C3—C4—C50.1 (6)C12A—C13A—C14—C9A61.0 (13)
C3—C4—C5—C6−0.5 (5)C12A—C13A—C14—C13−48 (3)
C3—C4—C5—C8176.4 (3)C10A—C9A—C14—C949.1 (12)
C4—C5—C6—C70.8 (6)O1—C9A—C14—C9−62.3 (11)
C8—C5—C6—C7−176.3 (3)C10A—C9A—C14—C13A−65.2 (11)
C5—C6—C7—C2−0.7 (6)O1—C9A—C14—C13A−176.6 (8)
C3—C2—C7—C60.2 (6)C10A—C9A—C14—C13−36.9 (11)
C1—C2—C7—C6178.2 (4)O1—C9A—C14—C13−148.2 (7)
C6—C5—C8—N1−156.8 (3)C12—C13—C14—C9−55.5 (15)
C4—C5—C8—N126.3 (5)C12—C13—C14—C13A57 (3)
O1—C9—C10—O253.9 (7)C12—C13—C14—C9A−23.7 (16)
C14—C9—C10—O2174.9 (5)C14—C9—O1—C9A−70.4 (12)
O1—C9—C10—C11172.2 (5)C10—C9—O1—C9A47.9 (12)
C14—C9—C10—C11−66.8 (9)C14—C9—O1—P1−163.7 (5)
C11—C12—C13—C1454.8 (18)C10—C9—O1—P1−45.4 (7)
O1—C9A—C10A—C11−169.5 (5)C10A—C9A—O1—C9−53.4 (12)
C14—C9A—C10A—C1173.9 (9)C14—C9A—O1—C960.9 (11)
O1—C9A—C10A—O2−53.9 (7)C10A—C9A—O1—P143.0 (7)
C14—C9A—C10A—O2−170.5 (6)C14—C9A—O1—P1157.4 (5)
C11—C12A—C13A—C14−61.2 (15)C9—C10—O2—C10A54.3 (10)
C9A—C10A—C11—C12−42.3 (11)C11—C10—O2—C10A−61.0 (10)
O2—C10A—C11—C12−147.6 (8)C9—C10—O2—P1−42.3 (7)
C9A—C10A—C11—C1045.1 (9)C11—C10—O2—P1−157.6 (5)
O2—C10A—C11—C10−60.2 (8)C9A—C10A—O2—C10−46.7 (10)
C9A—C10A—C11—C12A−67.5 (10)C11—C10A—O2—C1067.1 (10)
O2—C10A—C11—C12A−172.8 (8)C9A—C10A—O2—P147.2 (7)
C13—C12—C11—C10A−21.1 (16)C11—C10A—O2—P1161.0 (5)
C13—C12—C11—C10−56.1 (15)C10—O2—P1—O4−108 (3)
C13—C12—C11—C12A46 (3)C10A—O2—P1—O4−143 (3)
O2—C10—C11—C10A67.5 (10)C10—O2—P1—O3127.1 (4)
C9—C10—C11—C10A−44.6 (9)C10A—O2—P1—O392.1 (5)
O2—C10—C11—C12173.3 (6)C10—O2—P1—O4A−94.5 (13)
C9—C10—C11—C1261.2 (10)C10A—O2—P1—O4A−129.5 (13)
O2—C10—C11—C12A144.8 (7)C10—O2—P1—O113.4 (4)
C9—C10—C11—C12A32.7 (11)C10A—O2—P1—O1−21.6 (5)
C13A—C12A—C11—C10A61.4 (15)C9—O1—P1—O4131 (3)
C13A—C12A—C11—C12−59 (3)C9A—O1—P1—O498 (3)
C13A—C12A—C11—C1028.6 (16)C9—O1—P1—O3−93.8 (4)
O1—C9—C14—C13A145.1 (7)C9A—O1—P1—O3−126.4 (4)
C10—C9—C14—C13A35.1 (11)C9—O1—P1—O4A143.6 (15)
O1—C9—C14—C9A68.6 (12)C9A—O1—P1—O4A111.0 (15)
C10—C9—C14—C9A−41.4 (11)C9—O1—P1—O220.7 (5)
O1—C9—C14—C13173.4 (7)C9A—O1—P1—O2−11.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H3N···O3i0.92 (4)1.90 (4)2.788 (5)161 (3)
N1—H2N···O3ii1.00 (6)1.86 (6)2.834 (5)164 (4)
N1—H1N···O4iii0.92 (5)1.72 (6)2.63 (2)171 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5717).

References

  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, R. R., Ramkumar, V. & Chakraborty, D. (2010). Acta Cryst. E66, o1625. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography