PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3185.
Published online 2010 November 17. doi:  10.1107/S1600536810046325
PMCID: PMC3011587

Solvate-free bis­(triphenylphosphine)iminium chloride

Abstract

The title compound, C36H30NP2 +·Cl, crystallized in the solvate-free form from a CH3CN/OEt2 solution. The chloride anion and the N atom of the [(Ph3P)2N]+ cation are located on a twofold axis, yielding overall symmetry 2 for the cation. The central P—N—P angle [133.0 (3)°] is at the low end of the range of observed P—N—P angles.

Related literature

Several bis­(triphenyl­phosphine)iminium chloride structures containing solvate mol­ecules have been determined. For [(Ph3P)2N]Cl·B(OH)3, see: Andrews et al. (1983 [triangle]); for [(Ph3P)2N]Cl·CH3C6H5, see: Weller et al. (1993 [triangle]); for [(Ph3P)2N]Cl·CH2Cl2, see: Carroll et al. (1996 [triangle]); for [(Ph3P)2N]Cl·CH2Cl2·H2O, see: de Arellano (1997 [triangle]). Other bis­(triphenyl­phosphine)iminium halide structures have been determined: for [(Ph3P)2N]Br·CH3CN, see: Knapp & Uzun (2010 [triangle]); for [(Ph3P)2N]I, see: Beckett et al. (2010 [triangle]). For a discussion of the [(Ph3P)2N]+ cation, see: Lewis & Dance (2000 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For the synthesis, see: Ruff & Schlientz (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3185-scheme1.jpg

Experimental

Crystal data

  • C36H30NP2 +·Cl
  • M r = 574.00
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3185-efi1.jpg
  • a = 15.094 (3) Å
  • b = 10.499 (2) Å
  • c = 18.615 (4) Å
  • β = 99.06 (3)°
  • V = 2913.0 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 123 K
  • 0.30 × 0.23 × 0.23 mm

Data collection

  • Rigaku R-AXIS Spider diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001 [triangle]) T min = 0.924, T max = 0.941
  • 7362 measured reflections
  • 2551 independent reflections
  • 2296 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.135
  • S = 1.24
  • 2551 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2010 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046325/fi2099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046325/fi2099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG) and the Universität Freiburg is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound [(Ph3P)2N]Cl ([PNP]Cl) is a very important starting material and numerous crystal structures containing the [(Ph3P)2N]+ cation are known. The Cambridge Structural Database (Allen, 2002) currently contains more than 1200 structures containing the [(Ph3P)2N]+ cation. Usually this cation is partnered by a bulky cation, while crystal structures containing small anions and especially halides are rare. Very recently, the crystal structures of solvate-free [(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N]Br.CH3CN (Knapp et al., 2010) were published.

Several crystal structures of [(Ph3P)2N]Cl containing solvate molecules have been determined, e.g. [(Ph3P)2N]Cl.B(OH)3 (Andrews et al. (1983)), [(Ph3P)2N]Cl.CH3C6H5, (Weller et al. (1993)), [(Ph3P)2N]Cl.CH2Cl2 (Carroll et al. (1996)), [(Ph3P)2N]Cl.CH2Cl2.H2O (de Arellano (1997)). Surprisingly, the crystal structure of the parent compound [(Ph3P)2N]Cl was still unknown.

[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974) and solvate-free single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether. The chlorine anion and the [(Ph3P)2N]+ cation are located on a 2 axis, yielding overall symmetry 2 of the cation. The central P—N—P angle [133.1 (3)°] is on the low end of the range of observed P—N—P angles. The P-N (1.597 (2) Å) and P-C distances (179.3 (4)–180.8 (4) Å) are in the expected range.

Experimental

[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974). Single crystals suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether.

Refinement

The hydrogen atoms were positioned geometrically and refined using a riding model. The same Uiso value was used for all H atoms, which refined to 0.031 (3) Å2.

Figures

Fig. 1.
View of the ionic unit of [(Ph3P)2N]Cl. Displacement ellipsoids are shown at the 50% probability level and hydrogen atoms are drawn with arbitrary radii. Symmetry code: (i) 1-x, y, 1.5-z.
Fig. 2.
View of the surrounding of the chloride anion.

Crystal data

C36H30NP2+·ClF(000) = 1200
Mr = 574.00Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1435 reflections
a = 15.094 (3) Åθ = 2.2–27.5°
b = 10.499 (2) ŵ = 0.27 mm1
c = 18.615 (4) ÅT = 123 K
β = 99.06 (3)°Block, colourless
V = 2913.0 (10) Å30.30 × 0.23 × 0.23 mm
Z = 4

Data collection

Rigaku R-AXIS Spider diffractometer2551 independent reflections
Radiation source: sealed tube2296 reflections with I > 2σ(I)
graphiteRint = 0.043
Detector resolution: 10.0000 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scans and/or [var phi] scansh = −17→17
Absorption correction: multi-scan (ABSCOR; Higashi, 2001)k = −12→11
Tmin = 0.924, Tmax = 0.941l = −20→22
7362 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.24w = 1/[σ2(Fo2) + 10.5312P] where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.50000.80128 (11)0.75000.0264 (3)
P10.53916 (5)0.32003 (8)0.82724 (4)0.0175 (2)
N10.50000.2594 (4)0.75000.0200 (8)
C10.45695 (19)0.4133 (3)0.86442 (16)0.0177 (6)
C20.4358 (2)0.5349 (3)0.83690 (17)0.0206 (7)
H20.47000.57240.80380.030 (3)*
C30.3645 (2)0.6011 (3)0.85815 (19)0.0262 (8)
H30.35050.68440.83990.030 (3)*
C40.3135 (2)0.5461 (4)0.90596 (19)0.0293 (8)
H40.26390.59080.91930.030 (3)*
C50.3353 (2)0.4258 (3)0.9342 (2)0.0288 (8)
H50.30090.38910.96750.030 (3)*
C60.4070 (2)0.3582 (3)0.91427 (18)0.0258 (7)
H60.42200.27610.93400.030 (3)*
C70.57029 (19)0.1897 (3)0.88839 (17)0.0182 (7)
C80.6079 (2)0.2160 (3)0.96055 (18)0.0247 (7)
H80.61830.30180.97580.030 (3)*
C90.6297 (2)0.1184 (3)1.00954 (18)0.0260 (7)
H90.65480.13651.05850.030 (3)*
C100.6148 (2)−0.0064 (3)0.98669 (19)0.0261 (8)
H100.6298−0.07381.02040.030 (3)*
C110.5784 (2)−0.0344 (3)0.91551 (19)0.0242 (7)
H110.5685−0.12040.90050.030 (3)*
C120.5563 (2)0.0643 (3)0.86618 (18)0.0224 (7)
H120.53160.04570.81710.030 (3)*
C130.6391 (2)0.4148 (3)0.82560 (17)0.0216 (7)
C140.6520 (2)0.5357 (3)0.85535 (18)0.0232 (7)
H140.60810.57260.88040.030 (3)*
C150.7303 (2)0.6030 (3)0.8482 (2)0.0299 (8)
H150.73850.68680.86740.030 (3)*
C160.7957 (2)0.5487 (4)0.8137 (2)0.0314 (9)
H160.84880.59500.80980.030 (3)*
C170.7839 (2)0.4266 (3)0.78468 (19)0.0275 (8)
H170.82920.38880.76160.030 (3)*
C180.7054 (2)0.3602 (3)0.78966 (18)0.0249 (7)
H180.69640.27770.76880.030 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0250 (6)0.0205 (6)0.0352 (7)0.0000.0095 (5)0.000
P10.0157 (4)0.0178 (4)0.0194 (4)0.0007 (3)0.0037 (3)0.0004 (3)
N10.0140 (17)0.026 (2)0.0199 (19)0.0000.0030 (14)0.000
C10.0184 (15)0.0189 (16)0.0147 (14)0.0012 (12)−0.0006 (12)−0.0041 (13)
C20.0217 (16)0.0205 (17)0.0194 (16)−0.0022 (13)0.0028 (13)−0.0014 (14)
C30.0228 (16)0.0240 (18)0.0309 (18)0.0045 (14)0.0014 (14)−0.0018 (15)
C40.0186 (16)0.036 (2)0.033 (2)0.0056 (14)0.0048 (14)−0.0104 (17)
C50.0274 (18)0.0265 (18)0.036 (2)−0.0023 (15)0.0161 (15)−0.0018 (17)
C60.0232 (17)0.0279 (18)0.0270 (18)0.0008 (14)0.0057 (14)0.0038 (15)
C70.0161 (15)0.0199 (16)0.0192 (16)0.0005 (12)0.0044 (12)0.0004 (13)
C80.0263 (17)0.0210 (17)0.0272 (18)−0.0010 (14)0.0055 (14)0.0006 (15)
C90.0280 (18)0.0304 (19)0.0188 (16)0.0008 (14)0.0012 (13)0.0025 (15)
C100.0230 (17)0.0273 (18)0.0287 (19)0.0028 (14)0.0062 (14)0.0135 (15)
C110.0252 (17)0.0151 (16)0.0330 (19)0.0000 (13)0.0072 (14)0.0033 (14)
C120.0177 (15)0.0261 (18)0.0236 (17)−0.0016 (13)0.0036 (13)−0.0018 (15)
C130.0163 (15)0.0246 (17)0.0238 (17)0.0001 (13)0.0026 (12)0.0033 (14)
C140.0235 (17)0.0186 (16)0.0276 (18)−0.0014 (13)0.0040 (13)−0.0024 (14)
C150.0240 (17)0.0280 (19)0.036 (2)−0.0052 (15)−0.0003 (15)−0.0018 (16)
C160.0163 (16)0.043 (2)0.033 (2)−0.0046 (15)−0.0021 (14)0.0123 (17)
C170.0205 (16)0.032 (2)0.0305 (19)0.0033 (14)0.0050 (14)0.0089 (16)
C180.0195 (16)0.0311 (19)0.0237 (17)0.0026 (14)0.0020 (13)−0.0027 (15)

Geometric parameters (Å, °)

P1—N11.5984 (18)C8—H80.9500
P1—C71.795 (3)C9—C101.385 (5)
P1—C11.802 (3)C9—H90.9500
P1—C131.811 (3)C10—C111.384 (5)
N1—P1i1.5984 (18)C10—H100.9500
C1—C21.394 (4)C11—C121.390 (5)
C1—C61.409 (5)C11—H110.9500
C2—C31.390 (5)C12—H120.9500
C2—H20.9500C13—C141.386 (5)
C3—C41.390 (5)C13—C181.410 (4)
C3—H30.9500C14—C151.401 (5)
C4—C51.387 (5)C14—H140.9500
C4—H40.9500C15—C161.383 (5)
C5—C61.392 (5)C15—H150.9500
C5—H50.9500C16—C171.392 (5)
C6—H60.9500C16—H160.9500
C7—C121.386 (4)C17—C181.391 (5)
C7—C81.401 (4)C17—H170.9500
C8—C91.377 (5)C18—H180.9500
N1—P1—C7106.82 (17)C8—C9—C10119.3 (3)
N1—P1—C1112.50 (12)C8—C9—H9120.3
C7—P1—C1107.33 (15)C10—C9—H9120.3
N1—P1—C13113.24 (13)C11—C10—C9121.1 (3)
C7—P1—C13107.11 (14)C11—C10—H10119.5
C1—P1—C13109.49 (15)C9—C10—H10119.5
P1—N1—P1i133.0 (3)C10—C11—C12119.5 (3)
C2—C1—C6120.2 (3)C10—C11—H11120.3
C2—C1—P1119.2 (2)C12—C11—H11120.3
C6—C1—P1120.2 (2)C7—C12—C11120.1 (3)
C3—C2—C1119.7 (3)C7—C12—H12119.9
C3—C2—H2120.1C11—C12—H12119.9
C1—C2—H2120.1C14—C13—C18119.7 (3)
C4—C3—C2120.4 (3)C14—C13—P1124.1 (2)
C4—C3—H3119.8C18—C13—P1116.1 (3)
C2—C3—H3119.8C13—C14—C15119.5 (3)
C5—C4—C3119.9 (3)C13—C14—H14120.3
C5—C4—H4120.0C15—C14—H14120.3
C3—C4—H4120.0C16—C15—C14120.7 (3)
C4—C5—C6120.7 (3)C16—C15—H15119.6
C4—C5—H5119.6C14—C15—H15119.6
C6—C5—H5119.6C15—C16—C17120.2 (3)
C5—C6—C1119.0 (3)C15—C16—H16119.9
C5—C6—H6120.5C17—C16—H16119.9
C1—C6—H6120.5C18—C17—C16119.6 (3)
C12—C7—C8119.5 (3)C18—C17—H17120.2
C12—C7—P1121.5 (2)C16—C17—H17120.2
C8—C7—P1118.9 (2)C17—C18—C13120.3 (3)
C9—C8—C7120.5 (3)C17—C18—H18119.9
C9—C8—H8119.8C13—C18—H18119.9
C7—C8—H8119.8
C7—P1—N1—P1i−179.94 (11)C12—C7—C8—C9−0.9 (5)
C1—P1—N1—P1i62.54 (12)P1—C7—C8—C9177.8 (2)
C13—P1—N1—P1i−62.27 (13)C7—C8—C9—C100.4 (5)
N1—P1—C1—C2−76.9 (3)C8—C9—C10—C110.1 (5)
C7—P1—C1—C2165.9 (2)C9—C10—C11—C12−0.1 (5)
C13—P1—C1—C250.0 (3)C8—C7—C12—C110.9 (5)
N1—P1—C1—C695.5 (3)P1—C7—C12—C11−177.8 (2)
C7—P1—C1—C6−21.7 (3)C10—C11—C12—C7−0.4 (5)
C13—P1—C1—C6−137.7 (3)N1—P1—C13—C14132.3 (3)
C6—C1—C2—C3−0.8 (5)C7—P1—C13—C14−110.2 (3)
P1—C1—C2—C3171.6 (2)C1—P1—C13—C145.9 (3)
C1—C2—C3—C4−0.8 (5)N1—P1—C13—C18−46.0 (3)
C2—C3—C4—C51.7 (5)C7—P1—C13—C1871.5 (3)
C3—C4—C5—C6−1.0 (5)C1—P1—C13—C18−172.5 (2)
C4—C5—C6—C1−0.5 (5)C18—C13—C14—C151.1 (5)
C2—C1—C6—C51.4 (5)P1—C13—C14—C15−177.2 (3)
P1—C1—C6—C5−170.9 (3)C13—C14—C15—C16−1.8 (5)
N1—P1—C7—C12−2.0 (3)C14—C15—C16—C170.8 (5)
C1—P1—C7—C12118.9 (3)C15—C16—C17—C181.0 (5)
C13—P1—C7—C12−123.6 (3)C16—C17—C18—C13−1.7 (5)
N1—P1—C7—C8179.3 (2)C14—C13—C18—C170.7 (5)
C1—P1—C7—C8−59.8 (3)P1—C13—C18—C17179.1 (3)
C13—P1—C7—C857.7 (3)

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2099).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880–882.
  • Arellano, M. C. R. de (1997). Private communication (refcode: RAVBUL). CCDC, Cambridge, England.
  • Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta Cryst. E66, o319. [PMC free article] [PubMed]
  • Brandenburg, K. & Putz, H. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Carroll, K. M., Rheingold, A. L. & Allen, M. B. (1996). Private communication (refcode: NAVMEM ). CCDC, Cambridge, England.
  • Higashi, T. (2001). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Knapp, C. & Uzun, R. (2010). Acta Cryst. E66, o3186. [PMC free article] [PubMed]
  • Lewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299–306.
  • Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Ruff, J. K. & Schlientz, W. J. (1974). Inorg. Synth.15, 84–87.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weller, F., Nusshär, D. & Dehnicke, K. (1993). Z. Kristallogr.208, 322–325.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography