PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): i85.
Published online 2010 November 27. doi:  10.1107/S1600536810048609
PMCID: PMC3011581

β-Nd2Mo4O15

Abstract

The title compound, dineodymium(III) tetra­molybdate(VI), has been prepared by a flux technique and is the second polymorph of composition Nd2Mo4O15. The crystal structure is isotypic with those of Ce2Mo4O15 and Pr2Mo4O15. It features a three-dimensional network composed of distorted edge- and corner-sharing NdO7 polyhedra, NdO8 polyhedra, MoO4 tetra­hedra and MoO6 octa­hedra.

Related literature

For background to molybdates with rare earth (RE) cations, see: Borchardt & Bierstedt (1966 [triangle]); Ouwerkerk et al. (1982 [triangle]). For the α-polymorph of Nd2Mo4O15, see: Naruke & Yamase (2003 [triangle]). Structures isotypic with β-Nd2Mo4O15 were reported for the Ce (Fallon & Gatehouse, 1982 [triangle]) and Pr (Efremov et al., 1988a [triangle]) analogues. For the crystal structures, properties and applications of other molybdates with general formula RE 2Mo4O15, see: RE = La (Dubois et al., 2001 [triangle]); Tb (Naruke & Yamase, 2001 [triangle]); La, Nd, Sm (Naruke & Yamase, 2003 [triangle]); Ho (Efremov et al., 1988b [triangle]).

Experimental

Crystal data

  • Nd2Mo4O15
  • M r = 912.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00i85-efi2.jpg
  • a = 7.4000 (6) Å
  • b = 7.4992 (6) Å
  • c = 11.7291 (9) Å
  • α = 88.916 (2)°
  • β = 83.957 (1)°
  • γ = 84.196 (2)°
  • V = 643.94 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.77 mm−1
  • T = 293 K
  • 0.15 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.271, T max = 0.591
  • 3620 measured reflections
  • 2390 independent reflections
  • 2268 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.128
  • S = 1.05
  • 2390 reflections
  • 191 parameters
  • Δρmax = 3.38 e Å−3
  • Δρmin = −2.54 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048609/wm2425sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048609/wm2425Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Rare-earth molybdate compounds have been intensively studied due to their diversity and excellent chemical stabilities, as well as their potential applications as laser host phosphors, or as ferroelectric and ferroelastic materials (Borchardt & Bierstedt, 1966; Ouwerkerk et al., 1982). Previous studies of the family of RE2Mo4O15 (RE is a rare earth metal cation) compounds show that they adopt different structure types, such as monoclinic La2Mo4O15 with Z = 4 (Dubois et al., 2001; Naruke & Yamase, 2003); Tb2Mo4O15 (Naruke & Yamase, 2001) and Ho2Mo4O15 (Efremov et al., 1988b) with Z = 2, or triclinic Nd2Mo4O15 (Naruke & Yamase, 2003) with Z = 3. In this paper, we present synthesis and crystal structure of the β-phase of compound Nd2Mo4O15 which is structurally different from the first (α-) Nd2Mo4O15 polymorph (Naruke & Yamase, 2003), but is isotypic with Ce2Mo4O15 (Fallon & Gatehouse, 1982) and Pr2Mo4O15 (Efremov et al., 1988a) with Z = 2.

The structure of β-Nd2Mo4O15 features a three-dimensional framework composed of distorted NdO7, NdO8, MoO4 and MoO6 polyhedra, as shown in Fig. 1. There are four crystallographically different Mo atoms in the asymmetric unit. Mo(1), Mo(2), Mo(3) atoms are surrounded by four oxygen atoms within a tetrahedral coordination, while the Mo(4) atom is surrrounded by six oxygen atoms within a considerably distorted octahedral coordination. Two adjacent Mo(4)O6 octahedra are connected through edge-sharing, forming Mo2O10 units. These Mo2O10 units are interconnected by Mo(1)O4 tetrahedra via corner-sharing to form an infinite Mo4O14 chain parallel to [100]. The distorted environments of the two Nd atoms Nd(1) and Nd(2) are different. While Nd(1) is coordinated by seven oxygen atoms, Nd(2) is coordinated by eight oxygen atoms. The Mo4O14 chains are linked perpendicularly to the chain direction into a three-dimensional framework via isolated Mo(2)O4 and Mo(3)O4 tetrahedra and by Nd(1)O7 and Nd(2)O8 polyhedra sharing edges and corners (Fig. 2) .

Experimental

The finely ground reagents K2CO3, Nd2O3, and MoO3 were mixed in the molar ratio K: Nd: Mo = 3: 2: 6, were placed in a Pt crucible, and heated at 573 K for 4 h. The mixture was then re-ground and heated at 1273 K for 20 h, then cooled to 673 K at a rate of 3 K h-1, and finally quenched to room temperature. A few light-red crystals of the title compound with prismatic shape were obtained.

Refinement

The highest peak in the difference electron density map equals to 3.38 e/Å3 at the distance of 0.92 Å from the Nd(1) site while the deepest hole equals to -2.54 e/Å3 at the distance of 1.22 Å from the Nd(2) site.

Figures

Fig. 1.
The expanded asymmetric unit of β-Nd2Mo4O15 showing the coordination environments of the Mo and Nd atoms. [Symmetry codes: (i) x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) -1 + x, 1 + y, z; (iv) 1 - x, 1 - y, -z; (v) x, 1 + y, z; (vi) -x, 1 - y, 1 ...
Fig. 2.
View of the crystal structure of β-Nd2Mo4O15 along [010]. MoO4 and MoO6 units are given in the polyhedral representation.

Crystal data

Nd2Mo4O15Z = 2
Mr = 912.24F(000) = 816
Triclinic, P1Dx = 4.705 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4000 (6) ÅCell parameters from 487 reflections
b = 7.4992 (6) Åθ = 2.1–23.0°
c = 11.7291 (9) ŵ = 11.77 mm1
α = 88.916 (2)°T = 293 K
β = 83.957 (1)°Prism, light-red
γ = 84.196 (2)°0.15 × 0.15 × 0.05 mm
V = 643.94 (9) Å3

Data collection

Bruker SMART 1K CCD diffractometer2390 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 25.7°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −9→8
Tmin = 0.271, Tmax = 0.591k = −9→6
3620 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046w = 1/[σ2(Fo2) + (0.0986P)2 + 6.3644P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.05Δρmax = 3.38 e Å3
2390 reflectionsΔρmin = −2.54 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0080 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conven tional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.24478 (7)0.41215 (6)0.22477 (4)0.0090 (2)
Nd20.67891 (6)0.09060 (6)0.22360 (4)0.0081 (2)
Mo10.43929 (11)0.25334 (11)0.52879 (7)0.0093 (3)
Mo20.72798 (11)0.57014 (10)0.12800 (7)0.0081 (3)
Mo30.22775 (11)0.92862 (10)0.12894 (7)0.0084 (3)
Mo40.09418 (11)0.67225 (10)0.52795 (7)0.0090 (3)
O110.0842 (9)0.4745 (9)0.4032 (6)0.0122 (14)
O20.6680 (10)0.2917 (10)0.5608 (6)0.0180 (15)
O150.5756 (9)0.4080 (9)0.1806 (6)0.0124 (14)
O80.3544 (9)0.0941 (9)0.1872 (6)0.0116 (14)
O10.2954 (10)0.4305 (9)0.5914 (6)0.0161 (15)
O50.8677 (10)0.2270 (10)0.3442 (7)0.0183 (15)
O70.7035 (11)0.0974 (11)0.0170 (7)0.0209 (17)
O12−0.0335 (11)0.8313 (10)0.4610 (7)0.0217 (16)
O40.4229 (10)0.2652 (9)0.3798 (6)0.0153 (15)
O60.9983 (10)0.0078 (11)0.1526 (7)0.0231 (17)
O90.2747 (11)0.4070 (11)0.0191 (7)0.0227 (17)
O100.2620 (11)0.7197 (10)0.1964 (6)0.0200 (16)
O130.6638 (11)0.7841 (10)0.1853 (7)0.0207 (16)
O140.9451 (11)0.4864 (12)0.1581 (7)0.0253 (18)
O30.3788 (10)0.0521 (9)0.5944 (6)0.0150 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.0097 (3)0.0080 (3)0.0089 (3)0.0000 (2)0.0000 (2)0.0003 (2)
Nd20.0096 (3)0.0058 (3)0.0091 (3)−0.0022 (2)−0.0012 (2)−0.0003 (2)
Mo10.0098 (4)0.0084 (4)0.0101 (4)−0.0026 (3)−0.0019 (3)0.0022 (3)
Mo20.0086 (4)0.0075 (4)0.0084 (4)−0.0030 (3)0.0001 (3)0.0001 (3)
Mo30.0089 (4)0.0080 (4)0.0088 (4)−0.0025 (3)−0.0011 (3)−0.0016 (3)
Mo40.0083 (4)0.0079 (4)0.0113 (4)−0.0026 (3)−0.0011 (3)−0.0023 (3)
O110.013 (3)0.013 (3)0.011 (3)−0.004 (3)−0.001 (3)0.000 (3)
O20.017 (4)0.023 (4)0.015 (4)−0.006 (3)0.000 (3)0.002 (3)
O150.006 (3)0.011 (3)0.020 (4)−0.001 (2)0.003 (3)−0.006 (3)
O80.010 (3)0.008 (3)0.017 (3)−0.006 (3)−0.002 (3)−0.002 (3)
O10.019 (4)0.009 (3)0.019 (4)−0.003 (3)0.000 (3)−0.001 (3)
O50.016 (4)0.016 (4)0.024 (4)−0.004 (3)−0.001 (3)−0.004 (3)
O70.026 (4)0.024 (4)0.012 (4)−0.001 (3)0.000 (3)−0.006 (3)
O120.023 (4)0.016 (4)0.027 (4)0.003 (3)−0.008 (3)0.000 (3)
O40.015 (3)0.009 (3)0.019 (4)0.005 (3)0.001 (3)−0.001 (3)
O60.012 (4)0.030 (5)0.026 (4)0.002 (3)0.001 (3)−0.002 (3)
O90.026 (4)0.027 (4)0.016 (4)−0.005 (3)−0.001 (3)−0.003 (3)
O100.032 (4)0.015 (4)0.016 (4)−0.005 (3)−0.013 (3)0.004 (3)
O130.031 (4)0.011 (4)0.021 (4)−0.006 (3)−0.006 (3)−0.001 (3)
O140.015 (4)0.039 (5)0.021 (4)−0.007 (3)0.003 (3)0.007 (4)
O30.017 (3)0.008 (3)0.019 (4)−0.002 (3)0.000 (3)0.008 (3)

Geometric parameters (Å, °)

Nd1—O112.326 (7)Mo2—O151.798 (7)
Nd1—O102.339 (7)Mo3—O6v1.737 (7)
Nd1—O92.400 (8)Mo3—O7iv1.742 (8)
Nd1—O14i2.437 (8)Mo3—O101.749 (7)
Nd1—O152.446 (6)Mo3—O8vi1.814 (6)
Nd1—O82.472 (7)Mo4—O121.680 (8)
Nd1—O42.528 (7)Mo4—O5vii1.753 (7)
Nd1—Nd23.8158 (7)Mo4—O11viii1.909 (7)
Nd2—O13ii2.366 (7)Mo4—O2vii1.989 (7)
Nd2—O3iii2.387 (7)Mo4—O112.115 (7)
Nd2—O52.399 (7)Mo4—O12.386 (7)
Nd2—O72.411 (8)Mo4—Mo4viii3.1674 (15)
Nd2—O62.444 (7)O11—Mo4viii1.909 (7)
Nd2—O82.480 (7)O2—Mo4vii1.989 (7)
Nd2—O152.484 (7)O8—Mo3ii1.814 (6)
Nd2—O42.742 (7)O5—Mo4vii1.753 (7)
Mo1—O11.739 (7)O7—Mo3iv1.742 (8)
Mo1—O31.758 (7)O6—Mo3ix1.737 (7)
Mo1—O41.764 (7)O9—Mo2iv1.733 (8)
Mo1—O21.823 (7)O13—Nd2vi2.366 (7)
Mo2—O9iv1.733 (8)O14—Nd1x2.437 (8)
Mo2—O141.734 (8)O3—Nd2iii2.387 (7)
Mo2—O131.753 (7)
O11—Nd1—O1088.8 (3)O4—Nd2—Nd141.44 (15)
O11—Nd1—O9153.3 (3)O1—Mo1—O3108.8 (3)
O10—Nd1—O983.4 (3)O1—Mo1—O4107.4 (3)
O11—Nd1—O14i82.8 (3)O3—Mo1—O4114.5 (3)
O10—Nd1—O14i82.1 (3)O1—Mo1—O2105.5 (3)
O9—Nd1—O14i70.9 (3)O3—Mo1—O2109.3 (3)
O11—Nd1—O15125.3 (2)O4—Mo1—O2110.9 (3)
O10—Nd1—O1581.3 (3)O9iv—Mo2—O14109.3 (4)
O9—Nd1—O1578.7 (3)O9iv—Mo2—O13106.3 (4)
O14i—Nd1—O15146.7 (3)O14—Mo2—O13112.1 (4)
O11—Nd1—O8116.2 (2)O9iv—Mo2—O15109.1 (4)
O10—Nd1—O8152.5 (3)O14—Mo2—O15107.0 (3)
O9—Nd1—O878.6 (3)O13—Mo2—O15113.0 (3)
O14i—Nd1—O8110.8 (3)O6v—Mo3—O7iv111.1 (4)
O15—Nd1—O875.0 (2)O6v—Mo3—O10109.0 (4)
O11—Nd1—O470.6 (2)O7iv—Mo3—O10108.4 (4)
O10—Nd1—O4116.3 (2)O6v—Mo3—O8vi106.6 (4)
O9—Nd1—O4135.5 (2)O7iv—Mo3—O8vi109.7 (3)
O14i—Nd1—O4146.5 (2)O10—Mo3—O8vi112.0 (3)
O15—Nd1—O466.7 (2)O12—Mo4—O5vii104.3 (4)
O8—Nd1—O466.3 (2)O12—Mo4—O11viii102.4 (4)
O11—Nd1—Nd2116.20 (17)O5vii—Mo4—O11viii95.7 (3)
O10—Nd1—Nd2120.5 (2)O12—Mo4—O2vii97.0 (4)
O9—Nd1—Nd289.6 (2)O5vii—Mo4—O2vii97.9 (3)
O14i—Nd1—Nd2148.9 (2)O11viii—Mo4—O2vii152.7 (3)
O15—Nd1—Nd239.66 (16)O12—Mo4—O1194.5 (3)
O8—Nd1—Nd239.68 (15)O5vii—Mo4—O11160.8 (3)
O4—Nd1—Nd245.87 (15)O11viii—Mo4—O1176.3 (3)
O13ii—Nd2—O3iii73.9 (3)O2vii—Mo4—O1183.4 (3)
O13ii—Nd2—O5129.8 (3)O12—Mo4—O1170.4 (3)
O3iii—Nd2—O575.9 (3)O5vii—Mo4—O183.9 (3)
O13ii—Nd2—O779.6 (3)O11viii—Mo4—O181.3 (3)
O3iii—Nd2—O7153.0 (3)O2vii—Mo4—O176.7 (3)
O5—Nd2—O7126.9 (3)O11—Mo4—O177.7 (3)
O13ii—Nd2—O680.7 (3)O12—Mo4—Mo4viii100.5 (3)
O3iii—Nd2—O6107.9 (3)O5vii—Mo4—Mo4viii133.6 (3)
O5—Nd2—O671.7 (3)O11viii—Mo4—Mo4viii40.4 (2)
O7—Nd2—O672.0 (3)O2vii—Mo4—Mo4viii117.3 (2)
O13ii—Nd2—O879.2 (3)O11—Mo4—Mo4viii35.83 (18)
O3iii—Nd2—O891.6 (2)O1—Mo4—Mo4viii76.52 (17)
O5—Nd2—O8140.7 (2)Mo4viii—O11—Mo4103.7 (3)
O7—Nd2—O878.5 (3)Mo4viii—O11—Nd1122.5 (3)
O6—Nd2—O8146.8 (3)Mo4—O11—Nd1133.7 (3)
O13ii—Nd2—O15147.6 (2)Mo1—O2—Mo4vii136.8 (4)
O3iii—Nd2—O15124.5 (2)Mo2—O15—Nd1135.0 (4)
O5—Nd2—O1582.5 (2)Mo2—O15—Nd2123.6 (3)
O7—Nd2—O1577.3 (3)Nd1—O15—Nd2101.4 (2)
O6—Nd2—O15112.6 (3)Mo3ii—O8—Nd1126.2 (3)
O8—Nd2—O1574.2 (2)Mo3ii—O8—Nd2132.4 (3)
O13ii—Nd2—O4119.7 (3)Nd1—O8—Nd2100.8 (2)
O3iii—Nd2—O463.0 (2)Mo1—O1—Mo4136.9 (4)
O5—Nd2—O478.3 (2)Mo4vii—O5—Nd2152.6 (4)
O7—Nd2—O4129.9 (2)Mo3iv—O7—Nd2165.9 (5)
O6—Nd2—O4150.0 (2)Mo1—O4—Nd1144.6 (4)
O8—Nd2—O463.0 (2)Mo1—O4—Nd2122.6 (3)
O15—Nd2—O462.9 (2)Nd1—O4—Nd292.7 (2)
O13ii—Nd2—Nd1118.7 (2)Mo3ix—O6—Nd2168.5 (5)
O3iii—Nd2—Nd199.86 (17)Mo2iv—O9—Nd1171.6 (5)
O5—Nd2—Nd1105.23 (18)Mo3—O10—Nd1156.8 (4)
O7—Nd2—Nd188.49 (19)Mo2—O13—Nd2vi159.0 (5)
O6—Nd2—Nd1150.0 (2)Mo2—O14—Nd1x169.8 (5)
O8—Nd2—Nd139.53 (15)Mo1—O3—Nd2iii143.0 (4)
O15—Nd2—Nd138.92 (15)

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z; (v) x−1, y+1, z; (vi) x, y+1, z; (vii) −x+1, −y+1, −z+1; (viii) −x, −y+1, −z+1; (ix) x+1, y−1, z; (x) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2425).

References

  • Borchardt, H. J. & Bierstedt, P. E. (1966). Appl. Phys. Lett.8, 50–52.
  • Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dubois, F., Goutenoire, F., Laligant, Y., Suard, E. & Lacorre, P. (2001). J. Solid State Chem.159, 228–233.
  • Efremov, V. A., Davydova, N. N., Gokhman, L. Z., Evdokimov, A. A. & Trunov, V. K. (1988b). Zh. Neorg. Khim.33, 3005–3010.
  • Efremov, V. A., Davydova, N. N. & Trunov, V. K. (1988a). Zh. Neorg. Khim.33, 3001–3004.
  • Fallon, G. D. & Gatehouse, B. M. (1982). J. Solid State Chem.44, 156–161.
  • Naruke, H. & Yamase, T. (2001). Acta Cryst. E57, i106–i108.
  • Naruke, H. & Yamase, T. (2003). J. Solid State Chem.173, 407–417.
  • Ouwerkerk, M., Kellendonk, F. & Blasse, G. (1982). J. Chem. Soc. Faraday Trans.2, 603–611.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography