PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1579.
Published online 2010 November 17. doi:  10.1107/S1600536810046477
PMCID: PMC3011579

Bis[μ2-1,1-(butane-1,4-di­yl)-2,3-dicyclo­hexyl­guanidinato]bis­[(tetra­hydro­furan)­lithium](Li—Li)

Abstract

In the dinuclear centrosymmetric title complex, [Li2(C17H30N3)2(C4H8O)2], the Li+ cation is coordinated by three N atoms from two guanidinate ligands and an O atom from tetra­hydro­furan (THF) in a strongly distorted tetrahedral environment. In the guanidinate-bridged THF-stabilized dimer the Li(...)Li separation is short at 2.479 (8) Å.

Related literature

For related guanidinato compounds, see: Chandra et al. (1970 [triangle]); Barker & Kilner (1994 [triangle]); Bailey & Pace (2001 [triangle]); Coles & Hitchcock (2004 [triangle]); Corey et al. (2006 [triangle]); Zhou et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1579-scheme1.jpg

Experimental

Crystal data

  • [Li2(C17H30N3)2(C4H8O)2]
  • M r = 710.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1579-efi1.jpg
  • a = 10.446 (6) Å
  • b = 21.454 (15) Å
  • c = 10.491 (6) Å
  • β = 114.13 (4)°
  • V = 2146 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 223 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.980, T max = 0.987
  • 8457 measured reflections
  • 3688 independent reflections
  • 2749 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.237
  • S = 1.05
  • 3688 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046477/jj2061sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046477/jj2061Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Xuehong Wei and the Center of Testing and Analysis, Shanxi University, for support.

supplementary crystallographic information

Comment

As a result of the donor ability of the nitrogen centers and the potential to exploit both the steric and electronic effects induced by the programmed variation of organic substituents,the guanidinate anion has generated significant interest as a ligand (Bailey & Pace, 2001; Barker & Kilner, 1994). Since the first guanidinato complexes have been reported (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in ring-opening polymerisation reactions (Coles & Hitchcock, 2004) in catalysis applications.

In the title complex,[(THF)LiN(C6H11)C(NC4H8)N(C6H11)]2 , the Li cation is coordinated by three N atoms from two guanidinato ligands and an O atom from tetrahydrofuran as a dimer around a planar Li/N1/LiA/N1A ring (Fig. 1). The core of the centrosymmetric molecule has a fused tricyclic ladder motif comprising a central planar Li/N1/LiA/N1A ring flanked by planar N2/C1/N1/LiA and N2A/C1A/N1A/Li rings. The dihedral angle between the latter two rings is 46.4 (9)°. Inside the guanidinato-bridged THF-stabilized dimer the Li···Li separation is short at 2.479 (8) Å. Electronic delocalization throughout the guanidinate moiety is observed as evidenced by the C-N distances [N1—C1: 1.355 (3) Å, N2—C1: 1.314 (3) Å].

Experimental

A solution of N-tetrahydropyrrolyl lithium in diethylether (0.232g, 3mmol) was added dropwise with stirring at 0 C to a solution of N,N'-dicyclohexyl carbodiimide (0.619g, 3mmol) in ether. The mixture was warmed to room temperature and stirred for 2h. The solvent was removed under reduced pressure. The resulting white precipitate was washed with hexane and dried in vacuo. The residue was dissolved in a mixed solvent of THF and hexane, and then filtered. The concentration of the filtrate under reduced pressure gave the colorless crystals suitable for X-ray analysis over several days (yield 0.534g, 50%).

Refinement

All of the H atoms were contrained to ideal geometry and refined under the riding model with C–H distances of 0.98-0.99 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Li2(C17H30N3)2(C4H8O)2]F(000) = 784
Mr = 710.97Dx = 1.100 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1854 reflections
a = 10.446 (6) Åθ = 1.9–25.0°
b = 21.454 (15) ŵ = 0.07 mm1
c = 10.491 (6) ÅT = 223 K
β = 114.13 (4)°Block, colorless
V = 2146 (2) Å30.30 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer3688 independent reflections
Radiation source: fine-focus sealed tube2749 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.980, Tmax = 0.987k = −25→25
8457 measured reflectionsl = −12→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.237H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.1491P)2 + 0.6111P] where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Li1.0428 (4)0.04287 (19)0.4484 (4)0.0287 (9)
N10.8388 (2)0.03737 (9)0.4284 (2)0.0258 (5)
N20.7869 (2)−0.06576 (9)0.3820 (2)0.0282 (5)
N30.6042 (2)0.00733 (10)0.2715 (2)0.0311 (6)
O1.0417 (2)0.06534 (9)0.26561 (19)0.0396 (5)
C10.7440 (2)−0.00756 (11)0.3611 (2)0.0245 (6)
C20.7853 (2)0.09453 (10)0.4653 (3)0.0254 (6)
H20.68220.09520.41210.030*
C30.8457 (3)0.15283 (11)0.4260 (3)0.0316 (6)
H3A0.94800.15270.47640.038*
H3B0.82320.15210.32570.038*
C40.7868 (3)0.21241 (13)0.4613 (3)0.0442 (8)
H4A0.83140.24860.43960.053*
H4B0.68580.21480.40320.053*
C50.8114 (3)0.21468 (13)0.6146 (3)0.0465 (8)
H5A0.91200.21880.67250.056*
H5B0.76390.25120.63110.056*
C60.7565 (4)0.15618 (14)0.6565 (3)0.0476 (8)
H6A0.65390.15530.60830.057*
H6B0.78110.15730.75720.057*
C70.8164 (3)0.09684 (12)0.6211 (3)0.0359 (7)
H7A0.77510.06030.64590.043*
H7B0.91800.09550.67610.043*
C80.7020 (2)−0.11505 (11)0.2911 (3)0.0284 (6)
H80.6187−0.09600.21640.034*
C90.6532 (3)−0.16101 (12)0.3720 (3)0.0369 (7)
H9A0.5972−0.13880.41310.044*
H9B0.7352−0.17870.44850.044*
C100.5658 (3)−0.21360 (14)0.2799 (3)0.0456 (8)
H10A0.5389−0.24280.33660.055*
H10B0.4799−0.19640.20770.055*
C110.6480 (4)−0.24799 (14)0.2117 (4)0.0545 (9)
H11A0.7279−0.26930.28370.065*
H11B0.5879−0.27970.14790.065*
C120.7002 (4)−0.20397 (15)0.1320 (4)0.0542 (9)
H12A0.6200−0.18690.05250.065*
H12B0.7588−0.22700.09520.065*
C130.7857 (3)−0.15020 (13)0.2236 (3)0.0415 (7)
H13A0.8125−0.12130.16650.050*
H13B0.8718−0.16680.29680.050*
C140.5631 (3)0.05740 (13)0.1696 (3)0.0355 (7)
H14A0.57200.04460.08390.043*
H14B0.62090.09450.20720.043*
C150.4109 (4)0.0700 (2)0.1417 (5)0.0731 (12)
H15A0.39450.11490.14360.088*
H15B0.34860.05360.04990.088*
C160.3846 (4)0.0377 (2)0.2543 (5)0.0751 (13)
H16A0.40070.06610.33260.090*
H16B0.28790.02240.21910.090*
C170.4850 (3)−0.01453 (14)0.2982 (3)0.0431 (7)
H17A0.4439−0.05210.24360.052*
H17B0.5136−0.02380.39760.052*
C181.0836 (3)0.12480 (14)0.2329 (3)0.0439 (8)
H18A1.18600.12830.27300.053*
H18B1.04560.15860.26990.053*
C191.0247 (4)0.12776 (17)0.0757 (4)0.0571 (9)
H19A1.00540.17080.04210.069*
H19B1.08840.10850.03980.069*
C200.8910 (4)0.09066 (19)0.0352 (4)0.0636 (10)
H20A0.86030.0738−0.05950.076*
H20B0.81560.11620.04060.076*
C210.9332 (3)0.03918 (16)0.1427 (3)0.0501 (8)
H21A0.85310.02600.16210.060*
H21B0.96850.00300.10970.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Li0.023 (2)0.028 (2)0.032 (2)−0.0009 (17)0.0092 (18)0.0017 (17)
N10.0210 (11)0.0210 (10)0.0326 (12)−0.0009 (8)0.0081 (9)−0.0012 (8)
N20.0259 (11)0.0206 (11)0.0306 (12)0.0000 (8)0.0039 (9)−0.0021 (8)
N30.0183 (11)0.0282 (11)0.0417 (13)−0.0008 (8)0.0070 (9)0.0063 (9)
O0.0414 (12)0.0434 (12)0.0326 (11)−0.0087 (9)0.0137 (9)0.0035 (8)
C10.0214 (13)0.0262 (13)0.0261 (13)−0.0007 (10)0.0099 (10)0.0014 (10)
C20.0208 (12)0.0216 (12)0.0316 (14)0.0022 (9)0.0085 (10)0.0003 (10)
C30.0350 (15)0.0244 (13)0.0347 (15)−0.0012 (11)0.0134 (12)0.0015 (10)
C40.0527 (19)0.0236 (14)0.0531 (19)0.0045 (12)0.0185 (15)0.0043 (13)
C50.0525 (19)0.0311 (15)0.0538 (19)0.0050 (13)0.0197 (15)−0.0099 (13)
C60.062 (2)0.0454 (18)0.0457 (18)0.0076 (15)0.0319 (16)−0.0051 (14)
C70.0409 (16)0.0305 (14)0.0397 (16)0.0016 (12)0.0201 (13)0.0028 (12)
C80.0235 (13)0.0246 (13)0.0307 (14)−0.0004 (10)0.0044 (11)−0.0011 (10)
C90.0390 (16)0.0295 (14)0.0390 (16)−0.0051 (12)0.0128 (13)−0.0024 (12)
C100.0472 (18)0.0338 (16)0.0488 (18)−0.0121 (13)0.0124 (14)−0.0023 (13)
C110.054 (2)0.0286 (16)0.065 (2)−0.0043 (14)0.0080 (17)−0.0133 (15)
C120.056 (2)0.0511 (19)0.057 (2)−0.0076 (16)0.0242 (17)−0.0267 (16)
C130.0385 (16)0.0404 (16)0.0456 (18)−0.0043 (13)0.0173 (14)−0.0121 (13)
C140.0298 (15)0.0366 (15)0.0327 (15)0.0005 (11)0.0052 (12)0.0041 (12)
C150.042 (2)0.083 (3)0.088 (3)0.0260 (19)0.019 (2)0.043 (2)
C160.042 (2)0.067 (2)0.123 (4)0.0193 (18)0.041 (2)0.034 (2)
C170.0260 (15)0.0427 (17)0.060 (2)0.0015 (12)0.0165 (14)0.0078 (14)
C180.0455 (18)0.0397 (16)0.0545 (19)−0.0028 (13)0.0285 (15)0.0038 (14)
C190.063 (2)0.060 (2)0.054 (2)0.0105 (17)0.0285 (18)0.0237 (17)
C200.055 (2)0.085 (3)0.043 (2)0.0093 (19)0.0131 (17)0.0083 (18)
C210.052 (2)0.063 (2)0.0344 (16)−0.0132 (16)0.0162 (15)−0.0061 (15)

Geometric parameters (Å, °)

Li—O1.973 (5)C8—H80.9900
Li—N2i1.997 (5)C9—C101.522 (4)
Li—N12.057 (5)C9—H9A0.9800
Li—N1i2.204 (5)C9—H9B0.9800
Li—C1i2.427 (5)C10—C111.515 (5)
Li—Lii2.479 (8)C10—H10A0.9800
N1—C11.355 (3)C10—H10B0.9800
N1—C21.464 (3)C11—C121.504 (5)
N1—Lii2.204 (5)C11—H11A0.9800
N2—C11.314 (3)C11—H11B0.9800
N2—C81.457 (3)C12—C131.533 (4)
N2—Lii1.997 (5)C12—H12A0.9800
N3—C11.413 (3)C12—H12B0.9800
N3—C141.451 (3)C13—H13A0.9800
N3—C171.461 (4)C13—H13B0.9800
O—C181.435 (4)C14—C151.518 (4)
O—C211.438 (4)C14—H14A0.9800
C1—Lii2.427 (5)C14—H14B0.9800
C2—C71.532 (4)C15—C161.489 (6)
C2—C31.531 (3)C15—H15A0.9800
C2—H20.9900C15—H15B0.9800
C3—C41.528 (4)C16—C171.475 (5)
C3—H3A0.9800C16—H16A0.9800
C3—H3B0.9800C16—H16B0.9800
C4—C51.523 (5)C17—H17A0.9800
C4—H4A0.9800C17—H17B0.9800
C4—H4B0.9800C18—C191.507 (5)
C5—C61.518 (4)C18—H18A0.9800
C5—H5A0.9800C18—H18B0.9800
C5—H5B0.9800C19—C201.510 (5)
C6—C71.530 (4)C19—H19A0.9800
C6—H6A0.9800C19—H19B0.9800
C6—H6B0.9800C20—C211.510 (5)
C7—H7A0.9800C20—H20A0.9800
C7—H7B0.9800C20—H20B0.9800
C8—C91.519 (4)C21—H21A0.9800
C8—C131.529 (4)C21—H21B0.9800
O—Li—N2i117.1 (2)C8—C9—C10112.2 (2)
O—Li—N1108.7 (2)C8—C9—H9A109.2
N2i—Li—N1127.9 (2)C10—C9—H9A109.2
O—Li—N1i122.7 (2)C8—C9—H9B109.2
N2i—Li—N1i65.61 (15)C10—C9—H9B109.2
N1—Li—N1i108.94 (18)H9A—C9—H9B107.9
O—Li—C1i121.0 (2)C11—C10—C9110.6 (3)
N2i—Li—C1i32.77 (10)C11—C10—H10A109.5
N1—Li—C1i129.0 (2)C9—C10—H10A109.5
N1i—Li—C1i33.59 (10)C11—C10—H10B109.5
O—Li—Lii138.3 (3)C9—C10—H10B109.5
N2i—Li—Lii98.2 (2)H10A—C10—H10B108.1
N1—Li—Lii57.24 (16)C12—C11—C10111.2 (3)
N1i—Li—Lii51.70 (16)C12—C11—H11A109.4
C1i—Li—Lii77.4 (2)C10—C11—H11A109.4
C1—N1—C2117.2 (2)C12—C11—H11B109.4
C1—N1—Li126.8 (2)C10—C11—H11B109.4
C2—N1—Li114.63 (19)H11A—C11—H11B108.0
C1—N1—Lii82.27 (18)C11—C12—C13112.0 (3)
C2—N1—Lii133.03 (19)C11—C12—H12A109.2
Li—N1—Lii71.06 (18)C13—C12—H12A109.2
C1—N2—C8120.4 (2)C11—C12—H12B109.2
C1—N2—Lii91.93 (19)C13—C12—H12B109.2
C8—N2—Lii147.6 (2)H12A—C12—H12B107.9
C1—N3—C14124.9 (2)C12—C13—C8111.4 (2)
C1—N3—C17122.0 (2)C12—C13—H13A109.3
C14—N3—C17111.1 (2)C8—C13—H13A109.3
C18—O—C21109.8 (2)C12—C13—H13B109.3
C18—O—Li124.6 (2)C8—C13—H13B109.3
C21—O—Li117.7 (2)H13A—C13—H13B108.0
N2—C1—N1117.6 (2)N3—C14—C15104.2 (2)
N2—C1—N3121.0 (2)N3—C14—H14A110.9
N1—C1—N3121.5 (2)C15—C14—H14A110.9
N2—C1—Lii55.31 (16)N3—C14—H14B110.9
N1—C1—Lii64.14 (16)C15—C14—H14B110.9
N3—C1—Lii165.82 (19)H14A—C14—H14B108.9
N1—C2—C7111.85 (19)C16—C15—C14106.5 (3)
N1—C2—C3111.65 (19)C16—C15—H15A110.4
C7—C2—C3109.3 (2)C14—C15—H15A110.4
N1—C2—H2108.0C16—C15—H15B110.4
C7—C2—H2108.0C14—C15—H15B110.4
C3—C2—H2108.0H15A—C15—H15B108.6
C4—C3—C2111.5 (2)C17—C16—C15105.2 (3)
C4—C3—H3A109.3C17—C16—H16A110.7
C2—C3—H3A109.3C15—C16—H16A110.7
C4—C3—H3B109.3C17—C16—H16B110.7
C2—C3—H3B109.3C15—C16—H16B110.7
H3A—C3—H3B108.0H16A—C16—H16B108.8
C5—C4—C3111.8 (2)C16—C17—N3104.4 (3)
C5—C4—H4A109.2C16—C17—H17A110.9
C3—C4—H4A109.2N3—C17—H17A110.9
C5—C4—H4B109.2C16—C17—H17B110.9
C3—C4—H4B109.2N3—C17—H17B110.9
H4A—C4—H4B107.9H17A—C17—H17B108.9
C6—C5—C4111.0 (2)O—C18—C19105.7 (3)
C6—C5—H5A109.4O—C18—H18A110.6
C4—C5—H5A109.4C19—C18—H18A110.6
C6—C5—H5B109.4O—C18—H18B110.6
C4—C5—H5B109.4C19—C18—H18B110.6
H5A—C5—H5B108.0H18A—C18—H18B108.7
C5—C6—C7112.2 (2)C20—C19—C18101.7 (3)
C5—C6—H6A109.2C20—C19—H19A111.4
C7—C6—H6A109.2C18—C19—H19A111.4
C5—C6—H6B109.2C20—C19—H19B111.4
C7—C6—H6B109.2C18—C19—H19B111.4
H6A—C6—H6B107.9H19A—C19—H19B109.3
C6—C7—C2110.9 (2)C19—C20—C21102.8 (3)
C6—C7—H7A109.5C19—C20—H20A111.2
C2—C7—H7A109.5C21—C20—H20A111.2
C6—C7—H7B109.5C19—C20—H20B111.2
C2—C7—H7B109.5C21—C20—H20B111.2
H7A—C7—H7B108.0H20A—C20—H20B109.1
N2—C8—C9111.0 (2)O—C21—C20105.5 (3)
N2—C8—C13110.6 (2)O—C21—H21A110.6
C9—C8—C13109.0 (2)C20—C21—H21A110.6
N2—C8—H8108.8O—C21—H21B110.6
C9—C8—H8108.8C20—C21—H21B110.6
C13—C8—H8108.8H21A—C21—H21B108.8
O—Li—N1—C171.7 (3)C17—N3—C1—Lii−9.3 (9)
N2i—Li—N1—C1−137.6 (3)C1—N1—C2—C7104.0 (2)
N1i—Li—N1—C1−64.2 (3)Li—N1—C2—C7−88.3 (2)
C1i—Li—N1—C1−95.4 (3)Lii—N1—C2—C7−1.8 (3)
Lii—Li—N1—C1−64.2 (3)C1—N1—C2—C3−133.2 (2)
O—Li—N1—C2−94.5 (2)Li—N1—C2—C334.5 (3)
N2i—Li—N1—C256.1 (3)Lii—N1—C2—C3121.0 (2)
N1i—Li—N1—C2129.5 (2)N1—C2—C3—C4178.6 (2)
C1i—Li—N1—C298.3 (3)C7—C2—C3—C4−57.2 (3)
Lii—Li—N1—C2129.5 (2)C2—C3—C4—C555.9 (3)
O—Li—N1—Lii136.0 (3)C3—C4—C5—C6−53.3 (4)
N2i—Li—N1—Lii−73.4 (3)C4—C5—C6—C753.9 (4)
N1i—Li—N1—Lii0.0C5—C6—C7—C2−56.6 (3)
C1i—Li—N1—Lii−31.19 (16)N1—C2—C7—C6−178.7 (2)
N2i—Li—O—C18−45.7 (3)C3—C2—C7—C657.2 (3)
N1—Li—O—C18108.6 (3)C1—N2—C8—C9−116.5 (3)
N1i—Li—O—C18−122.8 (3)Lii—N2—C8—C958.7 (4)
C1i—Li—O—C18−83.0 (3)C1—N2—C8—C13122.5 (3)
Lii—Li—O—C18170.0 (4)Lii—N2—C8—C13−62.4 (4)
N2i—Li—O—C21168.5 (2)N2—C8—C9—C10−179.2 (2)
N1—Li—O—C21−37.3 (3)C13—C8—C9—C10−57.2 (3)
N1i—Li—O—C2191.4 (3)C8—C9—C10—C1157.5 (3)
C1i—Li—O—C21131.1 (3)C9—C10—C11—C12−55.1 (3)
Lii—Li—O—C2124.1 (5)C10—C11—C12—C1354.6 (4)
C8—N2—C1—N1−166.2 (2)C11—C12—C13—C8−55.4 (4)
Lii—N2—C1—N116.4 (2)N2—C8—C13—C12177.7 (2)
C8—N2—C1—N313.7 (3)C9—C8—C13—C1255.5 (3)
Lii—N2—C1—N3−163.7 (2)C1—N3—C14—C15−159.4 (3)
C8—N2—C1—Lii177.4 (3)C17—N3—C14—C154.6 (3)
C2—N1—C1—N2−149.7 (2)N3—C14—C15—C1613.9 (4)
Li—N1—C1—N244.3 (3)C14—C15—C16—C17−27.0 (5)
Lii—N1—C1—N2−14.9 (2)C15—C16—C17—N329.2 (4)
C2—N1—C1—N330.4 (3)C1—N3—C17—C16143.2 (3)
Li—N1—C1—N3−135.6 (2)C14—N3—C17—C16−21.4 (4)
Lii—N1—C1—N3165.1 (2)C21—O—C18—C19−14.8 (3)
C2—N1—C1—Lii−134.8 (2)Li—O—C18—C19−162.9 (2)
Li—N1—C1—Lii59.3 (3)O—C18—C19—C2032.7 (3)
C14—N3—C1—N2−136.5 (3)C18—C19—C20—C21−37.6 (3)
C17—N3—C1—N261.1 (3)C18—O—C21—C20−9.5 (3)
C14—N3—C1—N143.4 (4)Li—O—C21—C20141.2 (3)
C17—N3—C1—N1−118.9 (3)C19—C20—C21—O29.7 (3)
C14—N3—C1—Lii153.1 (7)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2061).

References

  • Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev.214, 91–141.
  • Barker, J. & Kilner, M. (1994). Coord. Chem. Rev.133, 219–300.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. pp. 2550–2558.
  • Coles, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem.13, 2662–2672.
  • Corey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem.45, 263–268. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem.692, 5195–5202.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography