PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3259.
Published online 2010 November 20. doi:  10.1107/S1600536810047586
PMCID: PMC3011578

1-Acetyl-2-r,6-c-bis­(4-chloro­phen­yl)-3-methyl-1,2,5,6-tetra­hydro­pyridin-4-yl acetate

Abstract

In the title compound, C22H21Cl2NO3, the pyridine ring adopts a half-chair conformation and the 4-chloro­phenyl groups occupy axial positions. The 4-chloro­phenyl groups are almost perpendicular to the plane of the tetra­hydro­pyridine ring forming dihedral angles 84.62 (6) and 85.55 (5)°; the dihedral angle between the two 4-chloro­phenyl rings is 12.16 (4)°. The crystal structure is stabilized by inter­molecular C—H(...)O inter­actions.

Related literature

For a related structure, see: Subha Nandhini et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3259-scheme1.jpg

Experimental

Crystal data

  • C22H21Cl2NO3
  • M r = 418.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3259-efi1.jpg
  • a = 16.560 (3) Å
  • b = 14.809 (3) Å
  • c = 10.241 (2) Å
  • β = 124.27 (3)°
  • V = 2075.5 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.866, T max = 0.936
  • 13520 measured reflections
  • 5546 independent reflections
  • 4578 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.100
  • S = 1.04
  • 5546 reflections
  • 256 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2649 Friedel pairs
  • Flack parameter: 0.02 (5)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Bruno et al., 2002 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047586/pv2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047586/pv2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Babu Varghese, Senior Scientist, Indian Institute of Technology Madras, for his valuable suggestions and for the data collection.

supplementary crystallographic information

Comment

The X-ray crystal structure determination of the title compound was undertaken to determine the effect of substitution of acetyl and acetoxy groups at positions 1 and 4, respectively, on the conformation of the tetrahydropyridine ring. The tetrahydropyridine ring adopts a half chair conformation with N1 and C3 atoms 0.324 (3) and -0.328 (3) Å, respectively, out of the basal plane formed by the remaining ring atoms (C4/C5/C6/C7) and the aryl groups occupy axial positions. The 4-chlorophenyl groups, C11–C16/Cl1 and C17–C22/Cl2, are almost perpendicular to the tetrahydropyridine ring forming dihedral angles 84.62 (6) and 85.55 (5)°, respectively; the dihedral angle between the two 4-chlorophenyl rings is 12.16 (4)°. The aryl groups take axial positions to avoid A1,3 strain. The acetoxy group O2/O3/C9/C10 is almost perpendicular (88.05 (6)°) to the tetrahydropyridine ring. The crystal structure is stabilized by intermolecular C—H···O interactions. The bond distances and angles in the title compound are comparable to a similar structure reported earlier (Subha Nandhini et al., (2003).

Experimental

A mixture of 3 t-methyl-2r,6c-bis(4-chlorophenyl)-piperidin-4-one (0.01 mol) and hippuric acid in acetic anhydride (20 ml) was refluxed for about 2 h. After the completion of reaction, excess of acetic anhydride was removed by distillation and water (50 ml) was added. The title compound thus obtained as a solid product was separated and colourless crystals were grown by slow evaporation method using ethanol as solvent.

Refinement

The H atoms were included in the refinement at geometrically idealized positions with C—H distances 0.93, 0.96, 0.97 and 0.99 Å for aryl, methyl, methylene and methyne type H-atoms in riding mode allowing Uiso(H) = 1.5 or 1.2 Ueq of the carrier methyl and non-methyl C-atoms, respectively.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Fig. 2.
Part of the crystal structure showing the formation of the possible three C—H···O hydrogen bonds C4—H4B···O1i, C3—H3···O3ii and C21—H21···O1iii ...

Crystal data

C22H21Cl2NO3F(000) = 872
Mr = 418.30Dx = 1.339 Mg m3
Monoclinic, CcMelting point: 411 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 16.560 (3) ÅCell parameters from 6663 reflections
b = 14.809 (3) Åθ = 2.8–59.2°
c = 10.241 (2) ŵ = 0.34 mm1
β = 124.27 (3)°T = 293 K
V = 2075.5 (10) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer5546 independent reflections
Radiation source: fine-focus sealed tube4578 reflections with I > 2σ(I)
graphiteRint = 0.020
ω and [var phi] scansθmax = 29.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −22→22
Tmin = 0.866, Tmax = 0.936k = −20→20
13520 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.100w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2729P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.011
5546 reflectionsΔρmax = 0.27 e Å3
256 parametersΔρmin = −0.17 e Å3
2 restraintsAbsolute structure: Flack (1983), 2649 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl20.12844 (5)0.18128 (4)−0.47636 (7)0.07210 (17)
Cl10.25477 (6)−0.00598 (5)−0.08332 (9)0.0858 (2)
O20.03552 (10)0.37134 (10)0.21164 (17)0.0576 (4)
N10.26481 (10)0.40891 (9)0.16833 (17)0.0389 (3)
C20.33771 (12)0.46887 (12)0.2128 (2)0.0478 (4)
O10.32636 (10)0.53254 (10)0.1281 (2)0.0664 (4)
C200.13277 (14)0.25613 (13)−0.3423 (2)0.0488 (4)
C170.14951 (12)0.36840 (12)−0.1132 (2)0.0395 (3)
O3−0.01433 (13)0.24011 (13)0.0838 (2)0.0784 (5)
C190.08085 (13)0.23746 (14)−0.2795 (2)0.0496 (4)
H190.04030.1871−0.31310.059*
C30.27461 (12)0.33000 (11)0.2627 (2)0.0398 (3)
H30.34040.33210.36040.048*
C70.16844 (11)0.42629 (12)0.0235 (2)0.0398 (3)
H70.16800.4894−0.00580.048*
C40.20259 (13)0.33908 (12)0.3092 (2)0.0457 (4)
H4A0.19240.28030.33930.055*
H4B0.23010.37850.40030.055*
C110.26760 (11)0.24311 (10)0.17759 (19)0.0391 (3)
C180.08892 (12)0.29388 (13)−0.1653 (2)0.0442 (4)
H180.05310.2815−0.12290.053*
C210.19096 (16)0.33134 (13)−0.2975 (3)0.0539 (5)
H210.22460.3444−0.34350.065*
C160.32496 (13)0.23387 (13)0.1197 (2)0.0492 (4)
H160.36680.28070.13490.059*
C150.32233 (15)0.15862 (14)0.0411 (3)0.0557 (5)
H150.36110.15450.00220.067*
C50.10804 (13)0.37564 (13)0.1803 (2)0.0446 (4)
C120.20837 (14)0.17175 (12)0.1571 (2)0.0462 (4)
H120.16990.17570.19660.055*
C220.19884 (14)0.38696 (13)−0.1840 (2)0.0497 (4)
H220.23800.4382−0.15370.060*
C60.08920 (12)0.41668 (12)0.0530 (2)0.0437 (4)
C140.26133 (15)0.08872 (13)0.0203 (2)0.0518 (4)
C130.20498 (15)0.09451 (14)0.0792 (2)0.0536 (4)
H130.16480.04670.06660.064*
C9−0.02127 (14)0.29704 (16)0.1591 (3)0.0569 (5)
C8−0.00692 (15)0.45758 (17)−0.0687 (3)0.0646 (5)
H8A−0.05840.4164−0.09300.097*
H8B−0.00910.4697−0.16270.097*
H8C−0.01520.5130−0.02890.097*
C10.43369 (16)0.45659 (18)0.3692 (3)0.0773 (7)
H1A0.47870.50240.38190.116*
H1B0.45980.39810.37270.116*
H1C0.42390.46150.45280.116*
C10−0.0915 (2)0.2967 (2)0.2046 (4)0.0833 (8)
H10A−0.14590.33500.13410.125*
H10B−0.05990.31870.31080.125*
H10C−0.11430.23630.19850.125*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl20.0966 (4)0.0705 (3)0.0709 (3)−0.0064 (3)0.0603 (3)−0.0127 (3)
Cl10.1101 (5)0.0630 (3)0.0896 (4)0.0059 (3)0.0595 (4)−0.0197 (3)
O20.0616 (8)0.0641 (9)0.0680 (9)−0.0104 (7)0.0490 (8)−0.0149 (7)
N10.0354 (6)0.0352 (6)0.0391 (7)−0.0014 (6)0.0166 (6)0.0038 (6)
C20.0403 (9)0.0400 (9)0.0554 (11)−0.0051 (7)0.0222 (9)−0.0003 (8)
O10.0557 (8)0.0515 (8)0.0809 (11)−0.0070 (6)0.0317 (8)0.0186 (8)
C200.0537 (10)0.0509 (10)0.0419 (9)0.0050 (9)0.0269 (9)0.0031 (8)
C170.0355 (7)0.0441 (9)0.0363 (8)0.0034 (7)0.0186 (7)0.0069 (7)
O30.0740 (10)0.0830 (11)0.0867 (12)−0.0323 (9)0.0504 (10)−0.0365 (10)
C190.0419 (9)0.0561 (11)0.0468 (10)−0.0072 (8)0.0226 (8)−0.0041 (8)
C30.0401 (8)0.0393 (8)0.0349 (8)−0.0014 (7)0.0179 (7)0.0031 (6)
C70.0383 (8)0.0390 (8)0.0402 (9)0.0005 (7)0.0211 (8)0.0046 (7)
C40.0556 (10)0.0439 (9)0.0417 (9)−0.0039 (8)0.0299 (9)−0.0022 (7)
C110.0364 (8)0.0363 (8)0.0362 (8)0.0031 (6)0.0154 (7)0.0054 (6)
C180.0396 (8)0.0535 (10)0.0425 (9)−0.0022 (7)0.0249 (8)0.0005 (8)
C210.0649 (11)0.0550 (11)0.0584 (11)0.0003 (9)0.0447 (10)0.0088 (9)
C160.0416 (9)0.0492 (9)0.0576 (11)0.0014 (8)0.0284 (9)0.0054 (8)
C150.0552 (11)0.0560 (11)0.0627 (12)0.0108 (9)0.0372 (10)0.0038 (9)
C50.0480 (9)0.0459 (9)0.0488 (10)−0.0057 (7)0.0326 (8)−0.0114 (8)
C120.0522 (9)0.0416 (9)0.0519 (10)0.0010 (8)0.0335 (9)0.0043 (8)
C220.0562 (10)0.0459 (10)0.0548 (11)−0.0036 (8)0.0360 (10)0.0056 (8)
C60.0387 (8)0.0449 (9)0.0479 (10)−0.0021 (7)0.0246 (8)−0.0063 (8)
C140.0596 (11)0.0439 (9)0.0473 (10)0.0126 (8)0.0273 (9)0.0026 (8)
C130.0600 (11)0.0434 (10)0.0539 (11)−0.0042 (8)0.0299 (10)−0.0004 (8)
C90.0465 (10)0.0690 (13)0.0547 (11)−0.0071 (9)0.0283 (10)−0.0039 (10)
C80.0464 (10)0.0793 (15)0.0663 (13)0.0130 (10)0.0305 (10)0.0061 (11)
C10.0444 (11)0.0672 (15)0.0794 (17)−0.0147 (10)0.0100 (11)0.0094 (12)
C100.0653 (14)0.105 (2)0.100 (2)−0.0069 (15)0.0590 (16)0.0042 (17)

Geometric parameters (Å, °)

Cl2—C201.7343 (19)C11—C161.381 (2)
Cl1—C141.725 (2)C18—H180.9300
O2—C91.347 (3)C21—C221.369 (3)
O2—C51.409 (2)C21—H210.9300
N1—C21.354 (2)C16—C151.361 (3)
N1—C71.465 (2)C16—H160.9300
N1—C31.466 (2)C15—C141.377 (3)
C2—O11.222 (2)C15—H150.9300
C2—C11.503 (3)C5—C61.307 (3)
C20—C191.361 (2)C12—C131.378 (3)
C20—C211.372 (3)C12—H120.9300
C17—C181.381 (3)C22—H220.9300
C17—C221.391 (2)C6—C81.490 (3)
C17—C71.516 (2)C14—C131.369 (3)
O3—C91.191 (3)C13—H130.9300
C19—C181.381 (3)C9—C101.475 (3)
C19—H190.9300C8—H8A0.9600
C3—C41.519 (2)C8—H8B0.9600
C3—C111.521 (2)C8—H8C0.9600
C3—H30.9800C1—H1A0.9600
C7—C61.510 (2)C1—H1B0.9600
C7—H70.9800C1—H1C0.9600
C4—C51.470 (3)C10—H10A0.9600
C4—H4A0.9700C10—H10B0.9600
C4—H4B0.9700C10—H10C0.9600
C11—C121.375 (2)
C9—O2—C5116.06 (15)C15—C16—H16118.9
C2—N1—C7118.79 (14)C11—C16—H16118.9
C2—N1—C3123.66 (14)C16—C15—C14118.94 (18)
C7—N1—C3117.42 (13)C16—C15—H15120.5
O1—C2—N1121.05 (17)C14—C15—H15120.5
O1—C2—C1119.84 (18)C6—C5—O2119.56 (17)
N1—C2—C1119.11 (17)C6—C5—C4127.06 (15)
C19—C20—C21121.22 (17)O2—C5—C4113.09 (16)
C19—C20—Cl2119.27 (15)C11—C12—C13121.28 (17)
C21—C20—Cl2119.48 (14)C11—C12—H12119.4
C18—C17—C22117.96 (17)C13—C12—H12119.4
C18—C17—C7122.41 (14)C21—C22—C17121.33 (18)
C22—C17—C7119.52 (16)C21—C22—H22119.3
C20—C19—C18119.45 (17)C17—C22—H22119.3
C20—C19—H19120.3C5—C6—C8124.46 (16)
C18—C19—H19120.3C5—C6—C7119.81 (15)
N1—C3—C4108.74 (14)C8—C6—C7115.73 (16)
N1—C3—C11110.61 (13)C13—C14—C15120.48 (18)
C4—C3—C11115.75 (14)C13—C14—Cl1119.96 (17)
N1—C3—H3107.1C15—C14—Cl1119.55 (15)
C4—C3—H3107.1C14—C13—C12119.44 (18)
C11—C3—H3107.1C14—C13—H13120.3
N1—C7—C6110.78 (13)C12—C13—H13120.3
N1—C7—C17112.11 (14)O3—C9—O2122.43 (18)
C6—C7—C17112.35 (14)O3—C9—C10125.6 (2)
N1—C7—H7107.1O2—C9—C10111.9 (2)
C6—C7—H7107.1C6—C8—H8A109.5
C17—C7—H7107.1C6—C8—H8B109.5
C5—C4—C3112.22 (14)H8A—C8—H8B109.5
C5—C4—H4A109.2C6—C8—H8C109.5
C3—C4—H4A109.2H8A—C8—H8C109.5
C5—C4—H4B109.2H8B—C8—H8C109.5
C3—C4—H4B109.2C2—C1—H1A109.5
H4A—C4—H4B107.9C2—C1—H1B109.5
C12—C11—C16117.53 (16)H1A—C1—H1B109.5
C12—C11—C3123.71 (15)C2—C1—H1C109.5
C16—C11—C3118.74 (15)H1A—C1—H1C109.5
C17—C18—C19120.89 (15)H1B—C1—H1C109.5
C17—C18—H18119.6C9—C10—H10A109.5
C19—C18—H18119.6C9—C10—H10B109.5
C22—C21—C20119.07 (16)H10A—C10—H10B109.5
C22—C21—H21120.5C9—C10—H10C109.5
C20—C21—H21120.5H10A—C10—H10C109.5
C15—C16—C11122.30 (17)H10B—C10—H10C109.5
C7—N1—C2—O1−5.9 (3)Cl2—C20—C21—C22−175.81 (16)
C3—N1—C2—O1178.46 (18)C12—C11—C16—C151.7 (3)
C7—N1—C2—C1173.89 (19)C3—C11—C16—C15−179.45 (18)
C3—N1—C2—C1−1.8 (3)C11—C16—C15—C14−0.8 (3)
C21—C20—C19—C18−1.8 (3)C9—O2—C5—C693.2 (2)
Cl2—C20—C19—C18175.93 (15)C9—O2—C5—C4−92.5 (2)
C2—N1—C3—C4117.77 (18)C3—C4—C5—C6−15.7 (3)
C7—N1—C3—C4−57.97 (18)C3—C4—C5—O2170.56 (14)
C2—N1—C3—C11−114.08 (18)C16—C11—C12—C13−1.2 (3)
C7—N1—C3—C1170.18 (18)C3—C11—C12—C13−179.91 (18)
C2—N1—C7—C6−130.70 (16)C20—C21—C22—C170.3 (3)
C3—N1—C7—C645.2 (2)C18—C17—C22—C21−2.6 (3)
C2—N1—C7—C17102.91 (18)C7—C17—C22—C21173.71 (17)
C3—N1—C7—C17−81.14 (17)O2—C5—C6—C8−2.5 (3)
C18—C17—C7—N1103.99 (18)C4—C5—C6—C8−175.8 (2)
C22—C17—C7—N1−72.1 (2)O2—C5—C6—C7176.44 (15)
C18—C17—C7—C6−21.5 (2)C4—C5—C6—C73.1 (3)
C22—C17—C7—C6162.36 (16)N1—C7—C6—C5−16.0 (2)
N1—C3—C4—C539.76 (19)C17—C7—C6—C5110.29 (17)
C11—C3—C4—C5−85.43 (19)N1—C7—C6—C8163.06 (16)
N1—C3—C11—C12−131.11 (17)C17—C7—C6—C8−70.7 (2)
C4—C3—C11—C12−6.9 (2)C16—C15—C14—C13−0.7 (3)
N1—C3—C11—C1650.2 (2)C16—C15—C14—Cl1178.36 (16)
C4—C3—C11—C16174.38 (15)C15—C14—C13—C121.2 (3)
C22—C17—C18—C192.7 (3)Cl1—C14—C13—C12−177.82 (16)
C7—C17—C18—C19−173.48 (16)C11—C12—C13—C14−0.3 (3)
C20—C19—C18—C17−0.6 (3)C5—O2—C9—O3−3.6 (3)
C19—C20—C21—C221.9 (3)C5—O2—C9—C10177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.982.443.341 (3)152
C4—H4B···O1ii0.972.353.308 (3)169
C7—H7···O10.982.262.701 (2)106

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2343).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography