PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3270.
Published online 2010 November 24. doi:  10.1107/S160053681004794X
PMCID: PMC3011575

2,4,5-Trimeth­oxy­benzaldehyde monohydrate

Abstract

In the title compound, C10H12O4·H2O, the 2,4,5-trimeth­oxy­benzaldehyde mol­ecule is almost planar (rms deviation = 0.0183 Å). There is an R 1 2(5) ring motif due to O—H(...)O hydrogen bonding. In the crystal, the mol­ecules are stabilized in the form of one-dimensional polymeric chains extending along [010] due to O—H(...)O hydrogen bonding with adjacent water mol­ecules. The H atoms involved in inter­molecular hydrogen bonding are disordered over two sets of sites of equal occupancy.

Related literature

For related background and related structures, see: Asiri et al. (2010a [triangle],b [triangle]), Hussain et al. (2010 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3270-scheme1.jpg

Experimental

Crystal data

  • C10H12O4·H2O
  • M r = 214.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3270-efi1.jpg
  • a = 18.084 (5) Å
  • b = 4.2456 (10) Å
  • c = 14.600 (4) Å
  • β = 108.290 (9)°
  • V = 1064.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.22 × 0.10 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.992, T max = 0.995
  • 8287 measured reflections
  • 1915 independent reflections
  • 983 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.212
  • S = 1.05
  • 1915 reflections
  • 148 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Bruno et al., 2002 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004794X/dn2621sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004794X/dn2621Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for the financial support of this work via grant No. (3–045/430).

supplementary crystallographic information

Comment

The crystal structure of (II) i.e., (E)-1-(2,5-dimethyl-3-thienyl)-3- (2,4,5-trimethoxyphenyl)prop-2-en-1-one (Asiri et al., 2010a), (III) i.e., 3,4-dimethyl-N-(2,4,5-trimethoxybenzylidene)-1,2-isoxazol-5-amine (Asiri et al., 2010b) and (IV) i.e., 2,3-Dimethyl-N-[(E)-2,4,5 -trimethoxybenzylidene]aniline (Hussain et al., 2010) have been published which contain the aldehyde moiety. The title compound (I, Fig. 1) is being reported here in which the aldehyde has reacted with water instead of aniline.

In (I), the 2,4,5-trimethoxybenzaldehyde is planar with r. m. s. deviation of 0.0183 Å. One of the H-atoms of water molecule is disordered over two set of sites with equal occupancy ratio. The non-disordered H-atom of H2O makes H-bonding with adjacent two methoxy groups through O—H···O type and complete an R12(5) ring motif (Bernstein et al., 1995). The disordered H-atoms of H2O makes H-bonding of O—H···O type with adjacent water molecules (Table 1, Fig. 2). Due to these H-bondings molecules are stabilized in the form of one dimensional polymeric chains extending along the b axis i.e [010]. There does not appear any appreciable π interaction.

Experimental

A mixture of 2,4,5-methoxy benzaldehyde (0.50 g, 2.5 mmol) and 4H-[1,2,4] Triazol-3-ylamine (0.21 g, 2.5 mmol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. This material was filtered off and washed with ethanol to give the starting aldehyde coordinated to water. m.p. 376 K

Refinement

The coordinates of H-atoms of water molecule are refined under distance restraints. One H-atom of H2O is disordered over two sites with equal occupancy ratio. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted lines represent the intramolecular H-bondings or bonds of disordered ...
Fig. 2.
Partial packing view showing the polymeric chains extending along the b axis.

Crystal data

C10H12O4·H2OF(000) = 456
Mr = 214.21Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 983 reflections
a = 18.084 (5) Åθ = 2.4–25.3°
b = 4.2456 (10) ŵ = 0.11 mm1
c = 14.600 (4) ÅT = 296 K
β = 108.290 (9)°Needle, colourless
V = 1064.3 (5) Å30.22 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer1915 independent reflections
Radiation source: fine-focus sealed tube983 reflections with I > 2σ(I)
graphiteRint = 0.066
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = −21→21
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −3→5
Tmin = 0.992, Tmax = 0.995l = −17→17
8287 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0973P)2 + 0.249P] where P = (Fo2 + 2Fc2)/3
1915 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.08087 (15)0.7631 (7)0.1135 (2)0.0705 (11)
O20.33240 (14)0.6231 (6)0.35470 (16)0.0572 (9)
O30.38101 (14)0.2960 (6)0.23792 (17)0.0588 (9)
O40.14718 (16)0.2497 (8)−0.0759 (2)0.0873 (14)
C10.1290 (2)0.4010 (10)−0.0160 (3)0.0697 (16)
C20.1803 (2)0.4721 (8)0.0809 (2)0.0501 (12)
C30.1560 (2)0.6509 (8)0.1459 (3)0.0511 (12)
C40.2054 (2)0.7063 (8)0.2389 (3)0.0480 (12)
C50.2800 (2)0.5845 (7)0.2667 (2)0.0452 (11)
C60.3059 (2)0.4044 (8)0.2018 (2)0.0454 (12)
C70.2562 (2)0.3514 (8)0.1105 (3)0.0479 (12)
C80.0523 (2)0.9331 (10)0.1787 (3)0.0740 (16)
C90.3107 (2)0.8019 (9)0.4243 (3)0.0635 (16)
C100.4117 (2)0.1230 (9)0.1747 (3)0.0636 (14)
O50.4918 (2)0.2497 (10)0.4398 (3)0.0985 (18)
H10.078290.47778−0.033010.0837*
H40.188300.824310.282050.0578*
H70.273210.232880.067480.0575*
H8A0.082621.121020.198620.1111*
H8B0.056070.804820.234120.1111*
H8C−0.001170.988830.147570.1111*
H9A0.265260.710630.434140.0950*
H9B0.299591.014510.401770.0950*
H9C0.352690.801710.484060.0950*
H10A0.410960.252220.120430.0949*
H10B0.38052−0.061510.152450.0949*
H10C0.464290.061410.208370.0949*
H510.452 (2)0.274 (13)0.390 (3)0.1180*
H520.498 (9)0.09 (2)0.474 (9)0.1180*0.500
H530.492 (9)0.42 (2)0.472 (9)0.1180*0.500

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0409 (16)0.094 (2)0.0703 (19)0.0102 (14)0.0084 (14)−0.0162 (15)
O20.0539 (16)0.0718 (16)0.0397 (14)0.0065 (12)0.0060 (13)−0.0050 (12)
O30.0494 (16)0.0691 (17)0.0519 (16)0.0141 (13)0.0071 (13)−0.0061 (12)
O40.056 (2)0.140 (3)0.0593 (19)0.0016 (17)0.0087 (16)−0.0300 (19)
C10.047 (2)0.095 (3)0.059 (3)0.000 (2)0.005 (2)−0.012 (2)
C20.043 (2)0.058 (2)0.048 (2)−0.0036 (18)0.0126 (18)0.0013 (18)
C30.038 (2)0.058 (2)0.056 (2)−0.0028 (17)0.0127 (19)0.0030 (18)
C40.045 (2)0.053 (2)0.045 (2)0.0003 (17)0.0127 (18)−0.0022 (16)
C50.047 (2)0.0455 (19)0.040 (2)−0.0056 (17)0.0092 (18)0.0024 (15)
C60.040 (2)0.050 (2)0.045 (2)0.0006 (16)0.0115 (18)0.0065 (16)
C70.044 (2)0.055 (2)0.047 (2)−0.0051 (17)0.0177 (18)−0.0022 (17)
C80.045 (2)0.080 (3)0.095 (3)0.005 (2)0.019 (2)−0.011 (2)
C90.068 (3)0.068 (3)0.050 (2)0.000 (2)0.012 (2)−0.0073 (19)
C100.052 (2)0.067 (2)0.069 (3)0.0106 (19)0.015 (2)−0.005 (2)
O50.074 (2)0.124 (4)0.083 (3)0.002 (3)0.004 (2)0.020 (2)

Geometric parameters (Å, °)

O1—C31.376 (5)C5—C61.407 (5)
O1—C81.415 (5)C6—C71.372 (5)
O2—C51.346 (4)C1—H10.9300
O2—C91.419 (5)C4—H40.9300
O3—C61.373 (4)C7—H70.9300
O3—C101.422 (5)C8—H8A0.9600
O4—C11.211 (5)C8—H8B0.9600
O5—H530.86 (10)C8—H8C0.9600
O5—H510.85 (4)C9—H9C0.9600
O5—H520.83 (10)C9—H9A0.9600
C1—C21.459 (5)C9—H9B0.9600
C2—C31.390 (5)C10—H10A0.9600
C2—C71.400 (5)C10—H10B0.9600
C3—C41.391 (6)C10—H10C0.9600
C4—C51.382 (5)
O2···O32.559 (4)H4···C92.5200
O2···O53.181 (5)H4···H9B2.3600
O3···O53.006 (5)H4···H9A2.2700
O3···O22.559 (4)H4···C82.4900
O5···O5i2.714 (6)H7···O42.5700
O5···C10ii3.191 (6)H7···C102.5500
O5···O33.006 (5)H7···H10A2.3700
O5···O5iii2.710 (6)H7···H10B2.3100
O5···O23.181 (5)H8A···C3vii2.8400
O1···H12.4500H8A···C42.7500
O2···H512.54 (5)H8A···H42.2900
O2···H9Biv2.7900H8B···C42.7100
O3···H10Cii2.8900H8B···C8xii3.0800
O3···H512.19 (4)H8B···H42.2700
O4···H9Av2.8600H8C···O4vi2.7100
O4···H72.5700H8C···C1vi3.0000
O4···H8Cvi2.7100H9A···H42.2700
O5···H9Ci2.6900H9A···C42.7100
O5···H10Cii2.8500H9A···O4xiii2.8600
O5···H52iii1.89 (10)H9B···C42.7800
O5···H53i1.86 (11)H9B···O2vii2.7900
C4···C7vii3.597 (5)H9B···H42.3600
C7···C4iv3.597 (5)H9B···C5vii3.0700
C7···C9viii3.494 (6)H9C···O5i2.6900
C9···C7ix3.494 (6)H9C···H10Bxiii2.5600
C10···O5x3.191 (6)H10A···H72.3700
C1···H8Cvi3.0000H10A···C72.7900
C3···H8Aiv2.8400H10B···C6iv2.8400
C4···H8B2.7100H10B···H9Cv2.5600
C4···H9A2.7100H10B···H72.3100
C4···H9B2.7800H10B···C72.7600
C4···H8A2.7500H10C···O5x2.8500
C5···H9Biv3.0700H10C···O3x2.8900
C6···H10Bvii2.8400H10C···H10Cii2.5800
C7···H10B2.7600H10C···C10x3.0000
C7···H10A2.7900H10C···H10Cx2.5800
C8···H8Bxi3.0800H51···O22.54 (5)
C8···H42.4900H51···O32.19 (4)
C9···H42.5200H51···C103.06 (4)
C10···H72.5500H51···H52iii2.45 (12)
C10···H10Cii3.0000H51···H53i2.34 (13)
C10···H513.06 (4)H52···O5iii1.89 (10)
H1···O12.4500H52···H51iii2.45 (12)
H4···H8A2.2900H53···O5i1.86 (10)
H4···H8B2.2700H53···H51i2.34 (12)
C3—O1—C8118.4 (3)C3—C4—H4120.00
C5—O2—C9118.6 (3)C5—C4—H4120.00
C6—O3—C10117.7 (3)C6—C7—H7119.00
H52—O5—H53112 (10)C2—C7—H7119.00
H51—O5—H52122 (10)O1—C8—H8A109.00
H51—O5—H53103 (10)O1—C8—H8B109.00
O4—C1—C2125.2 (4)O1—C8—H8C109.00
C3—C2—C7118.6 (3)H8B—C8—H8C109.00
C1—C2—C3122.3 (3)H8A—C8—H8B109.00
C1—C2—C7119.1 (3)H8A—C8—H8C109.00
O1—C3—C2116.4 (3)O2—C9—H9B109.00
O1—C3—C4122.6 (3)H9A—C9—H9C110.00
C2—C3—C4121.0 (3)O2—C9—H9C109.00
C3—C4—C5119.5 (3)H9A—C9—H9B110.00
C4—C5—C6120.4 (3)O2—C9—H9A109.00
O2—C5—C6115.2 (3)H9B—C9—H9C109.00
O2—C5—C4124.4 (3)O3—C10—H10C110.00
C5—C6—C7119.2 (3)H10A—C10—H10C109.00
O3—C6—C7125.8 (3)H10B—C10—H10C109.00
O3—C6—C5114.9 (3)H10A—C10—H10B109.00
C2—C7—C6121.3 (3)O3—C10—H10A109.00
O4—C1—H1117.00O3—C10—H10B109.00
C2—C1—H1117.00
C8—O1—C3—C2176.9 (3)C1—C2—C7—C6−178.2 (3)
C8—O1—C3—C4−2.0 (5)C3—C2—C7—C60.6 (5)
C9—O2—C5—C4−0.4 (5)O1—C3—C4—C5179.6 (3)
C9—O2—C5—C6−180.0 (3)C2—C3—C4—C50.7 (5)
C10—O3—C6—C5−177.6 (3)C3—C4—C5—O2−179.9 (3)
C10—O3—C6—C72.5 (5)C3—C4—C5—C6−0.3 (5)
O4—C1—C2—C3179.2 (4)O2—C5—C6—O3−0.3 (4)
O4—C1—C2—C7−2.1 (6)O2—C5—C6—C7179.7 (3)
C1—C2—C3—O1−1.1 (5)C4—C5—C6—O3−179.9 (3)
C1—C2—C3—C4177.9 (3)C4—C5—C6—C70.1 (5)
C7—C2—C3—O1−179.8 (3)O3—C6—C7—C2179.7 (3)
C7—C2—C3—C4−0.8 (5)C5—C6—C7—C2−0.2 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x, y−1, z; (v) x, −y+1/2, z−1/2; (vi) −x, −y+1, −z; (vii) x, y+1, z; (viii) x, −y+3/2, z−1/2; (ix) x, −y+3/2, z+1/2; (x) −x+1, y−1/2, −z+1/2; (xi) −x, y+1/2, −z+1/2; (xii) −x, y−1/2, −z+1/2; (xiii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H51···O20.85 (4)2.54 (5)3.181 (5)133 (4)
O5—H51···O30.85 (4)2.19 (4)3.006 (5)160 (4)
O5—H52···O5iii0.83 (10)1.89 (10)2.710 (6)174 (19)
O5—H53···O5i0.86 (10)1.86 (10)2.714 (6)169 (7)

Symmetry codes: (iii) −x+1, −y, −z+1; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2621).

References

  • Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099. [PMC free article] [PubMed]
  • Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, o2019. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography