PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1681.
Published online 2010 November 27. doi:  10.1107/S1600536810049007
PMCID: PMC3011567

[N,N-Bis(2,6-diisopropyl­phen­yl)pent-2-ene-2,4-diiminato(1−)]bis­(1,2,4-diaza­phosphol-1-yl)aluminium(III)

Abstract

In the title compound, [Al(C29H41N2)(C2H2N2P)2], the AlIII atom is coordinated by four N atoms from β-diketiminate and 1,2,4-diaza­phospho­lide ligands in a slightly distorted tetra­hedral fashion.

Related literature

For similar related 1,2,4-diaza­phospho­lide complexes, see: Schmidpeter & Willhalm (1984 [triangle]); Cui et al. (2000 [triangle]); Ding et al. (2001 [triangle]); Kumar et al. (2004 [triangle], 2005 [triangle]); Zheng et al. (2006 [triangle]); Wan et al. (2008 [triangle]); Pi et al. (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1681-scheme1.jpg

Experimental

Crystal data

  • [Al(C29H41N2)(C2H2N2P)2]
  • M r = 614.67
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1681-efi1.jpg
  • a = 10.578 (4) Å
  • b = 12.578 (5) Å
  • c = 13.498 (5) Å
  • α = 92.059 (5)°
  • β = 98.766 (5)°
  • γ = 96.516 (5)°
  • V = 1760.8 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 293 K
  • 0.35 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.940, T max = 0.965
  • 7337 measured reflections
  • 6082 independent reflections
  • 4238 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075
  • wR(F 2) = 0.224
  • S = 1.02
  • 6082 reflections
  • 389 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049007/bq2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049007/bq2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20971058 and 20977042).

supplementary crystallographic information

Comment

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng et al., 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky et al., 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1H-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the AlIII ion was coordinated by four nitrogen atoms of 2,6-iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6-iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

Experimental

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Hexane was dried over sodium and freshly distilled prior to use. 0.481 g [2,6-iPr2C6H3NC(Me)C(H)C(Me)N]AlH2 (1 eq.) and 0.172 g (2 eq.) 1,2,4-Dia-zaphosphole were dissolved in 20 ml toulent. The mixture was stirred for 24 h at room temperature and the solvent was then removed and dried in vacuo. The residua was extracted with 15 ml hexane and the solution was concentrated to about 5 ml to afford colorless crystals at -30°C for several days (yield: 0.32 g. 50%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.96 Å, and Uiso(H) = 1.2–1.5 times of those of their parent atoms.

Figures

Fig. 1.
The structure of the title complex with the atom numbering scheme. The thermal displacements are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

[Al(C29H41N2)(C2H2N2P)2]Z = 2
Mr = 614.67F(000) = 656
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.578 (4) ÅCell parameters from 872 reflections
b = 12.578 (5) Åθ = 3.4–25.6°
c = 13.498 (5) ŵ = 0.18 mm1
α = 92.059 (5)°T = 293 K
β = 98.766 (5)°Sheet, yellow
γ = 96.516 (5)°0.35 × 0.20 × 0.20 mm
V = 1760.8 (11) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6082 independent reflections
Radiation source: fine-focus sealed tube4238 reflections with I > 2σ(I)
graphiteRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −12→10
Tmin = 0.940, Tmax = 0.965k = −11→14
7337 measured reflectionsl = −16→12

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075w = 1/[σ2(Fo2) + (0.1531P)2 + ] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.47 e Å3
6082 reflectionsΔρmin = −0.56 e Å3
389 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Al10.22665 (7)0.79946 (6)0.78731 (6)0.0419 (3)
P1−0.16571 (10)0.71060 (10)0.62146 (10)0.0880 (4)
P20.18913 (13)1.08771 (11)0.97295 (11)0.1047 (5)
N10.0608 (2)0.7524 (2)0.7248 (2)0.0574 (6)
N2−0.0133 (3)0.7202 (4)0.7910 (3)0.1033 (13)
N30.2190 (2)0.9204 (2)0.86843 (18)0.0537 (6)
N40.3412 (2)0.9627 (2)0.9076 (2)0.0652 (7)
N50.3149 (2)0.70050 (18)0.86114 (16)0.0479 (6)
N60.3367 (2)0.83042 (17)0.69477 (16)0.0435 (5)
C1−0.1375 (5)0.6917 (5)0.7425 (4)0.125 (2)
H1−0.20250.66320.77660.149*
C2−0.0057 (4)0.7533 (3)0.6309 (3)0.0762 (10)
H20.03270.77530.57630.091*
C30.1292 (3)0.9771 (3)0.8954 (3)0.0717 (9)
H30.04150.95810.87380.086*
C40.3387 (4)1.0485 (3)0.9637 (3)0.0806 (11)
H40.41411.08710.99750.097*
C50.5225 (3)0.6473 (3)0.9408 (3)0.0738 (10)
H5A0.50840.66551.00760.111*
H5B0.61230.66380.93640.111*
H5C0.49670.57220.92530.111*
C60.4445 (3)0.7107 (2)0.8674 (2)0.0504 (7)
C70.5112 (3)0.7783 (2)0.8092 (2)0.0525 (7)
H70.60000.79000.82910.063*
C80.4642 (3)0.8307 (2)0.7260 (2)0.0493 (7)
C90.5580 (3)0.8893 (3)0.6683 (3)0.0737 (10)
H9A0.53490.86820.59830.111*
H9B0.64320.87210.69200.111*
H9C0.55620.96510.67780.111*
C100.2540 (3)0.6173 (3)0.9171 (2)0.0582 (8)
C110.2390 (3)0.6407 (3)1.0157 (3)0.0725 (10)
C120.1862 (4)0.5554 (5)1.0671 (4)0.0997 (16)
H120.17700.56761.13390.120*
C130.1485 (5)0.4568 (5)1.0230 (5)0.1080 (17)
H130.11320.40271.05930.130*
C140.1618 (4)0.4355 (4)0.9258 (4)0.0977 (14)
H140.13700.36670.89660.117*
C150.2122 (3)0.5161 (3)0.8695 (3)0.0715 (10)
C160.2732 (4)0.7513 (4)1.0672 (3)0.0849 (12)
H160.30840.79881.01940.102*
C170.3773 (6)0.7541 (6)1.1615 (3)0.138 (2)
H17A0.34160.71631.21330.207*
H17B0.40570.82721.18490.207*
H17C0.44910.72071.14500.207*
C180.1544 (5)0.7959 (5)1.0947 (4)0.1133 (16)
H18A0.08860.79051.03660.170*
H18B0.17660.86971.11780.170*
H18C0.12310.75551.14680.170*
C190.2203 (4)0.4905 (3)0.7606 (3)0.0836 (11)
H190.23470.55870.72890.100*
C200.0958 (6)0.4301 (5)0.7050 (5)0.142 (2)
H20A0.07600.36480.73710.213*
H20B0.10560.41370.63680.213*
H20C0.02710.47370.70590.213*
C210.3319 (6)0.4291 (5)0.7488 (5)0.149 (2)
H21A0.41120.47220.77610.224*
H21B0.33130.41180.67890.224*
H21C0.32420.36420.78390.224*
C220.2938 (3)0.8573 (2)0.5916 (2)0.0476 (6)
C230.2616 (3)0.9594 (2)0.5707 (2)0.0548 (7)
C240.2151 (4)0.9782 (3)0.4717 (3)0.0702 (9)
H240.19281.04580.45610.084*
C250.2012 (4)0.8998 (4)0.3964 (3)0.0782 (10)
H250.16990.91400.33060.094*
C260.2336 (4)0.8011 (3)0.4187 (3)0.0776 (10)
H260.22430.74840.36720.093*
C270.2802 (3)0.7761 (3)0.5160 (2)0.0613 (8)
C280.2762 (4)1.0491 (3)0.6497 (3)0.0691 (9)
H280.31241.02250.71400.083*
C290.3710 (4)1.1436 (3)0.6248 (3)0.0898 (12)
H29A0.45101.11830.61610.135*
H29B0.38601.19750.67890.135*
H29C0.33481.17370.56410.135*
C300.1480 (5)1.0861 (4)0.6605 (3)0.0971 (14)
H30A0.11751.12320.60230.146*
H30B0.15791.13360.71930.146*
H30C0.08691.02520.66690.146*
C310.3132 (4)0.6642 (3)0.5355 (3)0.0788 (10)
H310.32990.65820.60840.095*
C320.2037 (7)0.5800 (4)0.4934 (5)0.143 (2)
H32A0.12740.59430.51930.214*
H32B0.22530.51070.51250.214*
H32C0.18850.58130.42150.214*
C330.4358 (7)0.6444 (5)0.4945 (6)0.163 (3)
H33A0.41680.63310.42280.244*
H33B0.46810.58220.52320.244*
H33C0.49960.70560.51170.244*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Al10.0409 (4)0.0430 (5)0.0436 (4)0.0117 (3)0.0059 (3)0.0077 (3)
P10.0608 (6)0.0820 (7)0.1125 (9)0.0055 (5)−0.0134 (5)0.0134 (6)
P20.0950 (8)0.0948 (9)0.1276 (10)0.0281 (7)0.0282 (7)−0.0450 (8)
N10.0461 (13)0.0545 (15)0.0702 (16)0.0116 (11)0.0003 (11)0.0041 (12)
N20.069 (2)0.160 (4)0.084 (2)0.013 (2)0.0102 (17)0.052 (2)
N30.0525 (13)0.0565 (15)0.0545 (13)0.0158 (12)0.0100 (11)−0.0011 (11)
N40.0556 (15)0.0683 (18)0.0710 (17)0.0125 (13)0.0084 (12)−0.0148 (14)
N50.0490 (13)0.0486 (13)0.0482 (12)0.0112 (11)0.0077 (10)0.0143 (10)
N60.0479 (12)0.0416 (12)0.0439 (12)0.0139 (10)0.0088 (9)0.0069 (9)
C10.087 (3)0.152 (5)0.157 (5)0.031 (3)0.061 (3)0.084 (4)
C20.071 (2)0.086 (3)0.069 (2)0.005 (2)0.0050 (17)0.0152 (19)
C30.0625 (19)0.077 (2)0.082 (2)0.0228 (18)0.0210 (16)−0.0035 (18)
C40.073 (2)0.079 (3)0.085 (2)0.0090 (19)0.0056 (18)−0.029 (2)
C50.062 (2)0.081 (2)0.083 (2)0.0280 (18)0.0020 (17)0.0361 (19)
C60.0485 (15)0.0505 (16)0.0531 (15)0.0147 (13)0.0034 (12)0.0080 (13)
C70.0419 (14)0.0551 (17)0.0626 (17)0.0149 (13)0.0074 (12)0.0071 (14)
C80.0491 (15)0.0446 (15)0.0570 (16)0.0123 (13)0.0119 (12)0.0037 (12)
C90.0579 (19)0.086 (3)0.084 (2)0.0121 (18)0.0261 (17)0.026 (2)
C100.0487 (16)0.066 (2)0.0618 (18)0.0156 (15)0.0032 (13)0.0298 (15)
C110.0610 (19)0.100 (3)0.0609 (19)0.0191 (19)0.0094 (15)0.0404 (19)
C120.080 (3)0.142 (5)0.087 (3)0.028 (3)0.023 (2)0.069 (3)
C130.086 (3)0.109 (4)0.132 (4)0.008 (3)0.016 (3)0.073 (4)
C140.081 (3)0.078 (3)0.136 (4)0.012 (2)0.009 (3)0.057 (3)
C150.0608 (19)0.060 (2)0.094 (3)0.0116 (17)0.0055 (18)0.0335 (19)
C160.083 (2)0.124 (4)0.0481 (18)0.015 (2)0.0081 (17)0.019 (2)
C170.114 (4)0.229 (7)0.066 (3)0.032 (4)−0.004 (3)0.000 (4)
C180.112 (4)0.148 (5)0.089 (3)0.034 (3)0.029 (3)0.012 (3)
C190.098 (3)0.0468 (19)0.105 (3)0.0131 (19)0.010 (2)0.0077 (19)
C200.137 (5)0.130 (5)0.139 (5)−0.030 (4)−0.008 (4)0.003 (4)
C210.143 (5)0.138 (5)0.175 (6)0.058 (4)0.028 (4)−0.031 (4)
C220.0482 (14)0.0521 (16)0.0449 (14)0.0108 (13)0.0095 (11)0.0087 (12)
C230.0603 (17)0.0542 (17)0.0519 (16)0.0130 (14)0.0088 (13)0.0122 (13)
C240.078 (2)0.072 (2)0.064 (2)0.0208 (19)0.0079 (16)0.0246 (17)
C250.086 (2)0.099 (3)0.0493 (18)0.018 (2)0.0036 (16)0.0194 (19)
C260.092 (3)0.091 (3)0.0501 (18)0.016 (2)0.0098 (17)−0.0016 (18)
C270.072 (2)0.0618 (19)0.0533 (17)0.0107 (16)0.0168 (14)0.0032 (14)
C280.094 (2)0.0515 (18)0.0631 (19)0.0244 (18)0.0038 (17)0.0110 (15)
C290.108 (3)0.060 (2)0.095 (3)0.006 (2)−0.002 (2)0.013 (2)
C300.122 (4)0.087 (3)0.097 (3)0.052 (3)0.033 (3)0.012 (2)
C310.111 (3)0.059 (2)0.069 (2)0.017 (2)0.017 (2)−0.0058 (16)
C320.202 (6)0.065 (3)0.139 (5)−0.008 (4)−0.023 (4)−0.014 (3)
C330.169 (6)0.097 (4)0.255 (8)0.072 (4)0.089 (6)0.026 (5)

Geometric parameters (Å, °)

Al1—N11.848 (3)C16—H160.9800
Al1—N61.855 (2)C17—H17A0.9600
Al1—N31.858 (3)C17—H17B0.9600
Al1—N51.867 (2)C17—H17C0.9600
P1—C11.646 (6)C18—H18A0.9600
P1—C21.700 (4)C18—H18B0.9600
P2—C31.711 (4)C18—H18C0.9600
P2—C41.731 (4)C19—C211.506 (7)
N1—N21.320 (4)C19—C201.518 (7)
N1—C21.354 (4)C19—H190.9800
N2—C11.378 (6)C20—H20A0.9600
N3—C31.336 (4)C20—H20B0.9600
N3—N41.360 (4)C20—H20C0.9600
N4—C41.301 (4)C21—H21A0.9600
N5—C61.352 (4)C21—H21B0.9600
N5—C101.460 (4)C21—H21C0.9600
N6—C81.350 (4)C22—C231.393 (4)
N6—C221.461 (3)C22—C271.397 (4)
C1—H10.9300C23—C241.390 (4)
C2—H20.9300C23—C281.503 (4)
C3—H30.9300C24—C251.370 (5)
C4—H40.9300C24—H240.9300
C5—C61.502 (4)C25—C261.356 (5)
C5—H5A0.9600C25—H250.9300
C5—H5B0.9600C26—C271.391 (5)
C5—H5C0.9600C26—H260.9300
C6—C71.384 (4)C27—C311.511 (5)
C7—C81.379 (4)C28—C301.509 (6)
C7—H70.9300C28—C291.546 (6)
C8—C91.498 (4)C28—H280.9800
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—C111.389 (5)C30—H30A0.9600
C10—C151.398 (5)C30—H30B0.9600
C11—C121.407 (6)C30—H30C0.9600
C11—C161.513 (6)C31—C321.504 (7)
C12—C131.347 (7)C31—C331.527 (7)
C12—H120.9300C31—H310.9800
C13—C141.361 (7)C32—H32A0.9600
C13—H130.9300C32—H32B0.9600
C14—C151.395 (5)C32—H32C0.9600
C14—H140.9300C33—H33A0.9600
C15—C191.511 (6)C33—H33B0.9600
C16—C181.523 (6)C33—H33C0.9600
C16—C171.548 (6)
N1—Al1—N6111.60 (12)C16—C17—H17C109.5
N1—Al1—N3107.50 (11)H17A—C17—H17C109.5
N6—Al1—N3110.79 (11)H17B—C17—H17C109.5
N1—Al1—N5116.84 (12)C16—C18—H18A109.5
N6—Al1—N599.77 (10)C16—C18—H18B109.5
N3—Al1—N5110.22 (11)H18A—C18—H18B109.5
C1—P1—C286.8 (2)C16—C18—H18C109.5
C3—P2—C485.27 (17)H18A—C18—H18C109.5
N2—N1—C2112.7 (3)H18B—C18—H18C109.5
N2—N1—Al1110.9 (2)C21—C19—C15112.2 (4)
C2—N1—Al1135.9 (3)C21—C19—C20110.1 (4)
N1—N2—C1109.3 (3)C15—C19—C20112.1 (4)
C3—N3—N4113.3 (3)C21—C19—H19107.4
C3—N3—Al1138.0 (2)C15—C19—H19107.4
N4—N3—Al1108.65 (18)C20—C19—H19107.4
C4—N4—N3109.9 (3)C19—C20—H20A109.5
C6—N5—C10118.2 (2)C19—C20—H20B109.5
C6—N5—Al1117.43 (19)H20A—C20—H20B109.5
C10—N5—Al1124.27 (18)C19—C20—H20C109.5
C8—N6—C22118.4 (2)H20A—C20—H20C109.5
C8—N6—Al1117.63 (18)H20B—C20—H20C109.5
C22—N6—Al1123.90 (17)C19—C21—H21A109.5
N2—C1—P1116.9 (3)C19—C21—H21B109.5
N2—C1—H1121.6H21A—C21—H21B109.5
P1—C1—H1121.6C19—C21—H21C109.5
N1—C2—P1114.1 (3)H21A—C21—H21C109.5
N1—C2—H2122.9H21B—C21—H21C109.5
P1—C2—H2122.9C23—C22—C27121.4 (3)
N3—C3—P2114.3 (3)C23—C22—N6120.7 (2)
N3—C3—H3122.8C27—C22—N6117.8 (3)
P2—C3—H3122.8C24—C23—C22117.8 (3)
N4—C4—P2117.2 (3)C24—C23—C28119.2 (3)
N4—C4—H4121.4C22—C23—C28123.0 (3)
P2—C4—H4121.4C25—C24—C23121.7 (3)
C6—C5—H5A109.5C25—C24—H24119.2
C6—C5—H5B109.5C23—C24—H24119.2
H5A—C5—H5B109.5C26—C25—C24119.4 (3)
C6—C5—H5C109.5C26—C25—H25120.3
H5A—C5—H5C109.5C24—C25—H25120.3
H5B—C5—H5C109.5C25—C26—C27122.3 (3)
N5—C6—C7123.2 (3)C25—C26—H26118.9
N5—C6—C5119.6 (3)C27—C26—H26118.9
C7—C6—C5117.2 (3)C26—C27—C22117.5 (3)
C8—C7—C6129.0 (3)C26—C27—C31119.4 (3)
C8—C7—H7115.5C22—C27—C31123.2 (3)
C6—C7—H7115.5C23—C28—C30111.5 (3)
N6—C8—C7122.1 (3)C23—C28—C29110.2 (3)
N6—C8—C9119.2 (3)C30—C28—C29110.5 (3)
C7—C8—C9118.8 (3)C23—C28—H28108.2
C8—C9—H9A109.5C30—C28—H28108.2
C8—C9—H9B109.5C29—C28—H28108.2
H9A—C9—H9B109.5C28—C29—H29A109.5
C8—C9—H9C109.5C28—C29—H29B109.5
H9A—C9—H9C109.5H29A—C29—H29B109.5
H9B—C9—H9C109.5C28—C29—H29C109.5
C11—C10—C15121.9 (3)H29A—C29—H29C109.5
C11—C10—N5119.3 (3)H29B—C29—H29C109.5
C15—C10—N5118.8 (3)C28—C30—H30A109.5
C10—C11—C12116.5 (4)C28—C30—H30B109.5
C10—C11—C16123.5 (3)H30A—C30—H30B109.5
C12—C11—C16120.1 (4)C28—C30—H30C109.5
C13—C12—C11122.2 (5)H30A—C30—H30C109.5
C13—C12—H12118.9H30B—C30—H30C109.5
C11—C12—H12118.9C32—C31—C27112.0 (4)
C12—C13—C14120.7 (4)C32—C31—C33110.7 (5)
C12—C13—H13119.7C27—C31—C33111.0 (4)
C14—C13—H13119.7C32—C31—H31107.6
C13—C14—C15120.5 (5)C27—C31—H31107.6
C13—C14—H14119.8C33—C31—H31107.6
C15—C14—H14119.8C31—C32—H32A109.5
C14—C15—C10118.2 (4)C31—C32—H32B109.5
C14—C15—C19118.9 (4)H32A—C32—H32B109.5
C10—C15—C19122.9 (3)C31—C32—H32C109.5
C11—C16—C18111.3 (4)H32A—C32—H32C109.5
C11—C16—C17112.8 (4)H32B—C32—H32C109.5
C18—C16—C17109.8 (4)C31—C33—H33A109.5
C11—C16—H16107.6C31—C33—H33B109.5
C18—C16—H16107.6H33A—C33—H33B109.5
C17—C16—H16107.6C31—C33—H33C109.5
C16—C17—H17A109.5H33A—C33—H33C109.5
C16—C17—H17B109.5H33B—C33—H33C109.5
H17A—C17—H17B109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2246).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  • Cui, C. M., Roesky, H. W., Hao, H. J., Schmidt, H. G. & Noletmeyer, M. (2000). Angew. Chem. Int. Ed.39, 1815–1817. [PubMed]
  • Ding, Y. Q., Roesky, H. W., Noletmeyer, M. & Schmidt, H. G. (2001). Organometallics, 20, 1190–1194.
  • Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W. & Magull, J. (2005). Inorg. Chem.44, 1199–1201. [PubMed]
  • Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W., Vidovic, D. & Magull, J. (2004). Organometallics, 23, 6327–6329.
  • Pi, C. F., Wan, L., Gu, Y. Y., Zheng, W. J., Wu, H. Y., Weng, L. H., Chen, Z. X. & Wu, L. M. (2008). Inorg. Chem.47, 9739–9741. [PubMed]
  • Pi, C. F., Wan, L., Liu, W. P., Pan, Z. F., Wu, H. Y., Wang, Y. H., Zheng, W. J., Weng, L. H., Chen, Z. X. & Wu, L. M. (2009). Inorg. Chem 48, 2967–2975. [PubMed]
  • Schmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed.23, 903–904.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266–2268. [PubMed]
  • Zheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548–1550.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography