PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3231.
Published online 2010 November 20. doi:  10.1107/S1600536810047331
PMCID: PMC3011565

1,3-Dimethyl-5,6,7,8-tetra­hydro-4H-cyclo­hepta­[c]thio­phene-4,8-dione

Abstract

In the title compound, C11H12O2S, the C and S atoms of the central thio­phene and the methyl groups, and the two carbonyl groups of the cyclo­hepta­nedione are almost coplanar [maximum deviation from the mean plane = 0.221 (2) Å]. The packing is stabilized by π–π inter­actions between the conjugated thio­phenes, the shortest centroid–centroid distance between thio­phene rings being 3.9759 (10) Å.

Related literature

The title compound was obtained as the product of our ongoing research of conjugated thio­phenes for electronic devices and dye-sensitized solar cells (DSSCs). For applications of conjugated thio­phenes, see: Amaresh et al. (2002 [triangle]); Nielsen & Bjonholm (2004 [triangle]). For related structures, see: Dufresne et al. (2007 [triangle]); Kuroda et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3231-scheme1.jpg

Experimental

Crystal data

  • C11H12O2S
  • M r = 208.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3231-efi1.jpg
  • a = 15.9875 (6) Å
  • b = 7.6354 (3) Å
  • c = 16.9963 (6) Å
  • V = 2074.75 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.920, T max = 0.951
  • 15732 measured reflections
  • 1822 independent reflections
  • 1430 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.109
  • S = 1.02
  • 1822 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047331/vm2059sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047331/vm2059Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSFC, the SRFDP (20090141120052) and the Fundamental Research Funds for Central Universities (2082001).

supplementary crystallographic information

Comment

Since the sulfur atom can contribute to the peripheral conjugation either by two p-electron moieties with its lone pair electrons or by p-sulfurane type conjugation, conjugated thiophenes have received much attention because of many new possibilities for constructing devices displaying unique optical, electrical, and mechanical properties (Nielsen et al., 2004). Certain applications of conjugated thiophenes involve organic light emitting diodes and molecular wires, to be used in flexible light displays and/or low power consumption products (Amaresh et al., 2002). Here, we report the structure of a novel conjugated thiophenes.

The crystal structure of the title compound is given in Fig.1. The crystallographic analysis confirms that the title compound consists of a central thiophene capped by two methyl groups. The molecular symmetry can be described by point group C2. The cycloheptane ring shows a twisted boat conformation. The C—C bond lengths with each methyl are almost equal, with an average value of 1.506 (3) Å. Futhermore, π-π interactions stabilize the packing (Fig. 2). The closest centroid distance of approximate paraller thiophene rings is 3.9759 (10) Å.

Experimental

The title compound was prepared according to the literature (Kuroda et al., 2005), using diffusion of hexane into a toluene solution of the title compound at room temperature. 1H NMR (CDCl3, δ, p.p.m.): 2.45 (m, 4H), 2.32 (s, 6H), 1.93 (m, 2H). Analysis calculated (%): C 63.43, H 5.81; found (%): C 63.20, H 6.05.

Refinement

All H-atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.96 and 0.97 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of (I) viewed along the b-direction.

Crystal data

C11H12O2SF(000) = 880
Mr = 208.27Dx = 1.333 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4563 reflections
a = 15.9875 (6) Åθ = 2.4–22.2°
b = 7.6354 (3) ŵ = 0.28 mm1
c = 16.9963 (6) ÅT = 298 K
V = 2074.75 (13) Å3Block, yellow
Z = 80.30 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1822 independent reflections
Radiation source: fine-focus sealed tube1430 reflections with I > 2σ(I)
graphiteRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −16→19
Tmin = 0.920, Tmax = 0.951k = −9→8
15732 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5349P] where P = (Fo2 + 2Fc2)/3
1822 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.20027 (4)0.11743 (8)0.72032 (3)0.0670 (2)
C20.35875 (12)0.1124 (2)0.70942 (10)0.0496 (5)
C30.32681 (12)0.1405 (2)0.63092 (10)0.0493 (5)
C10.29639 (14)0.0980 (3)0.76406 (11)0.0575 (5)
C90.37901 (14)0.1832 (3)0.56162 (11)0.0614 (5)
O20.35621 (12)0.1474 (2)0.49522 (8)0.0898 (6)
C40.24140 (14)0.1457 (2)0.62814 (11)0.0557 (5)
O10.47614 (12)0.0907 (2)0.79362 (10)0.0882 (5)
C50.44794 (14)0.0756 (3)0.72741 (12)0.0593 (5)
C60.50182 (13)0.0112 (3)0.66046 (14)0.0688 (6)
H6A0.4706−0.07460.63030.083*
H6B0.5508−0.04670.68190.083*
C110.18386 (16)0.1778 (3)0.55955 (15)0.0779 (7)
H11A0.20300.27780.53050.117*
H11B0.12820.19910.57850.117*
H11C0.18360.07680.52590.117*
C100.30152 (17)0.0610 (4)0.85104 (12)0.0842 (7)
H10A0.3411−0.03120.86020.126*
H10B0.24750.02580.87000.126*
H10C0.31920.16480.87820.126*
C80.45990 (15)0.2776 (3)0.57771 (14)0.0766 (7)
H8A0.45010.36670.61740.092*
H8B0.47780.33640.53000.092*
C70.53003 (16)0.1575 (3)0.60577 (16)0.0838 (7)
H7A0.55680.10560.56010.101*
H7B0.57160.22770.63280.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0548 (4)0.0684 (4)0.0779 (4)0.0012 (3)0.0116 (3)−0.0081 (3)
C20.0545 (12)0.0435 (10)0.0509 (10)0.0014 (8)−0.0025 (8)−0.0017 (8)
C30.0536 (12)0.0423 (10)0.0520 (10)0.0016 (8)−0.0011 (8)−0.0048 (8)
C10.0666 (14)0.0511 (12)0.0549 (11)0.0028 (9)0.0053 (9)−0.0034 (8)
C90.0753 (15)0.0547 (12)0.0542 (12)0.0090 (11)0.0068 (10)0.0051 (9)
O20.1081 (14)0.1103 (15)0.0510 (9)0.0094 (11)0.0021 (8)0.0020 (8)
C40.0569 (13)0.0482 (11)0.0620 (11)0.0026 (9)−0.0061 (9)−0.0085 (8)
O10.0824 (12)0.1029 (13)0.0792 (11)0.0074 (10)−0.0269 (9)0.0002 (9)
C50.0603 (13)0.0496 (11)0.0679 (12)−0.0008 (10)−0.0089 (10)0.0025 (9)
C60.0524 (13)0.0577 (13)0.0962 (16)0.0081 (10)−0.0042 (11)−0.0077 (11)
C110.0685 (15)0.0810 (16)0.0841 (16)0.0095 (12)−0.0247 (12)−0.0115 (13)
C100.105 (2)0.0922 (17)0.0554 (13)0.0103 (15)0.0135 (12)0.0038 (12)
C80.0785 (16)0.0637 (14)0.0875 (16)−0.0077 (13)0.0204 (13)0.0109 (12)
C70.0628 (15)0.0810 (17)0.1076 (18)−0.0070 (13)0.0210 (14)−0.0048 (14)

Geometric parameters (Å, °)

S1—C41.713 (2)C6—H6A0.9700
S1—C11.714 (2)C6—H6B0.9700
C2—C11.367 (3)C11—H11A0.9600
C2—C31.445 (2)C11—H11B0.9600
C2—C51.485 (3)C11—H11C0.9600
C3—C41.367 (3)C10—H10A0.9600
C3—C91.480 (3)C10—H10B0.9600
C1—C101.507 (3)C10—H10C0.9600
C9—O21.217 (2)C8—C71.525 (4)
C9—C81.506 (3)C8—H8A0.9700
C4—C111.505 (3)C8—H8B0.9700
O1—C51.218 (2)C7—H7A0.9700
C5—C61.509 (3)C7—H7B0.9700
C6—C71.521 (3)
C4—S1—C193.64 (10)C4—C11—H11A109.5
C1—C2—C3112.43 (18)C4—C11—H11B109.5
C1—C2—C5123.04 (18)H11A—C11—H11B109.5
C3—C2—C5123.89 (17)C4—C11—H11C109.5
C4—C3—C2112.91 (17)H11A—C11—H11C109.5
C4—C3—C9121.98 (17)H11B—C11—H11C109.5
C2—C3—C9124.64 (18)C1—C10—H10A109.5
C2—C1—C10129.9 (2)C1—C10—H10B109.5
C2—C1—S1110.63 (15)H10A—C10—H10B109.5
C10—C1—S1119.38 (16)C1—C10—H10C109.5
O2—C9—C3121.3 (2)H10A—C10—H10C109.5
O2—C9—C8122.2 (2)H10B—C10—H10C109.5
C3—C9—C8116.45 (18)C9—C8—C7113.58 (19)
C3—C4—C11129.9 (2)C9—C8—H8A108.8
C3—C4—S1110.39 (14)C7—C8—H8A108.8
C11—C4—S1119.62 (18)C9—C8—H8B108.8
O1—C5—C2121.9 (2)C7—C8—H8B108.8
O1—C5—C6121.1 (2)H8A—C8—H8B107.7
C2—C5—C6117.02 (17)C6—C7—C8114.50 (19)
C5—C6—C7113.00 (18)C6—C7—H7A108.6
C5—C6—H6A109.0C8—C7—H7A108.6
C7—C6—H6A109.0C6—C7—H7B108.6
C5—C6—H6B109.0C8—C7—H7B108.6
C7—C6—H6B109.0H7A—C7—H7B107.6
H6A—C6—H6B107.8
C1—C2—C3—C4−0.3 (2)C9—C3—C4—C115.3 (3)
C5—C2—C3—C4170.75 (18)C2—C3—C4—S10.23 (19)
C1—C2—C3—C9171.89 (18)C9—C3—C4—S1−172.24 (14)
C5—C2—C3—C9−17.0 (3)C1—S1—C4—C3−0.06 (15)
C3—C2—C1—C10177.1 (2)C1—S1—C4—C11−177.88 (17)
C5—C2—C1—C105.9 (3)C1—C2—C5—O1−26.3 (3)
C3—C2—C1—S10.3 (2)C3—C2—C5—O1163.48 (19)
C5—C2—C1—S1−170.90 (15)C1—C2—C5—C6151.22 (19)
C4—S1—C1—C2−0.14 (16)C3—C2—C5—C6−19.0 (3)
C4—S1—C1—C10−177.35 (18)O1—C5—C6—C7−103.5 (2)
C4—C3—C9—O2−34.1 (3)C2—C5—C6—C778.9 (2)
C2—C3—C9—O2154.3 (2)O2—C9—C8—C7−102.1 (3)
C4—C3—C9—C8144.01 (19)C3—C9—C8—C779.8 (2)
C2—C3—C9—C8−27.6 (3)C5—C6—C7—C8−49.7 (3)
C2—C3—C4—C11177.76 (19)C9—C8—C7—C6−37.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2059).

References

  • Amaresh, R. R., Lakshmikantham, M. V., Baldwin, J. W., Cava, M. P., Metzger, R. M. & Rogers, R. D. (2002). J. Org. Chem.67, 2453–2458. [PubMed]
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem.17, 1166–1177.
  • Kuroda, S., Oda, M., Oda, M., Nagai, M., Wada, Y., Miyatake, R., Fukuda, T., Takamatsu, H., Thanh, N. C., Mouri, M., Zhang, Y. & Kyogoku, M. (2005). Tetrahedron Lett.46, 7311–7314.
  • Nielsen, C. B. & Bjonholm, T. (2004). Org. Lett.6, 3381–3384. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography