PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3324.
Published online 2010 November 27. doi:  10.1107/S1600536810048853
PMCID: PMC3011564

4-Methyl-1-(3-pyridyl­methyl­idene)thio­semicarbazide

Abstract

All the non-H atoms of the title compound, C8H10N4S, lie on a crystallographic mirror plane and an intra­molecular N—H(...)N hydrogen bond helps to stabilize the mol­ecular conformation. In the crystal, mol­ecules are linked through inter­molecular N—H(...)N hydrogen bonds, forming zigzag C(7) chains along the a axis.

Related literature

For background to Schiff bases derived from thio­semicarbazone and its derivatives, see: Casas et al. (2001 [triangle]); Beraldo et al. (2001 [triangle]); Jouad et al. (2002 [triangle]); Swearingen et al. (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For similar structures, see: Selvanayagam et al. (2002 [triangle]); Karakurt et al. (2003 [triangle]); Bernhardt et al. (2003 [triangle]); Sampath et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3324-scheme1.jpg

Experimental

Crystal data

  • C8H10N4S
  • M r = 194.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3324-efi1.jpg
  • a = 7.276 (3) Å
  • b = 6.581 (2) Å
  • c = 10.297 (3) Å
  • β = 92.997 (2)°
  • V = 492.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 298 K
  • 0.17 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.953, T max = 0.958
  • 3208 measured reflections
  • 1106 independent reflections
  • 640 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.118
  • S = 1.02
  • 1106 reflections
  • 84 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048853/hb5755sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048853/hb5755Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thiosemicarbazone and its derivatives are important materials for the preparation of Schiff bases (Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). In this paper, the title new Schiff base compound derived from the condensation of 3-formylpyridine with 4-methylthiosemicarbazone is reported.

The molecule of the title compound, Fig. 1, possess a crystallographic mirror plane symmetry. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).

In the crystal, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).

Experimental

The title compound was prepared by the Schiff base condensation of equimolar quantities of 3-formylpyridine (0.107 g, 1 mmol) with 4-methylthiosemicarbazone (0.105 g, 1 mmol) in methanol. The excess methanol was removed by distillation. Colourless blocks were obtained by slow evaporation of an ethanol solution of the product in air.

Refinement

The amino H atoms were located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis.

Crystal data

C8H10N4SF(000) = 204
Mr = 194.26Dx = 1.310 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 669 reflections
a = 7.276 (3) Åθ = 2.7–24.5°
b = 6.581 (2) ŵ = 0.29 mm1
c = 10.297 (3) ÅT = 298 K
β = 92.997 (2)°Block, colourless
V = 492.4 (3) Å30.17 × 0.15 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer1106 independent reflections
Radiation source: fine-focus sealed tube640 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scansθmax = 26.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→9
Tmin = 0.953, Tmax = 0.958k = −8→8
3208 measured reflectionsl = −12→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3
1106 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.68926 (12)0.25000.29184 (9)0.0835 (4)
N1−0.2929 (3)0.2500−0.1051 (2)0.0558 (7)
N20.2508 (3)0.25000.0542 (2)0.0507 (6)
N30.4324 (3)0.25000.1009 (2)0.0566 (7)
N40.3217 (4)0.25000.3028 (3)0.0699 (8)
C10.0350 (3)0.2500−0.1287 (3)0.0496 (7)
C2−0.1201 (3)0.2500−0.0547 (3)0.0510 (8)
H2−0.10200.25000.03540.061*
C3−0.3159 (4)0.2500−0.2351 (3)0.0616 (9)
H3A−0.43530.2500−0.27200.074*
C4−0.1733 (4)0.2500−0.3164 (3)0.0697 (10)
H4A−0.19540.2500−0.40610.084*
C50.0049 (4)0.2500−0.2620 (3)0.0673 (10)
H50.10410.2500−0.31540.081*
C60.2213 (4)0.2500−0.0687 (3)0.0581 (8)
H60.32090.2500−0.12170.070*
C70.4698 (4)0.25000.2318 (3)0.0554 (8)
C80.3272 (5)0.25000.4451 (3)0.0994 (13)
H8A0.33100.11250.47620.149*0.50
H8B0.21930.31620.47430.149*0.50
H8C0.43490.32130.47810.149*0.50
H30.519 (3)0.25000.042 (2)0.080*
H40.212 (2)0.25000.259 (3)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0681 (6)0.1189 (9)0.0617 (6)0.000−0.0150 (4)0.000
N10.0392 (13)0.0640 (17)0.0642 (17)0.0000.0028 (12)0.000
N20.0365 (12)0.0615 (16)0.0542 (15)0.0000.0019 (11)0.000
N30.0416 (13)0.0775 (18)0.0508 (16)0.0000.0024 (11)0.000
N40.0738 (18)0.085 (2)0.0518 (16)0.0000.0136 (14)0.000
C10.0369 (14)0.0618 (19)0.0503 (17)0.0000.0058 (12)0.000
C20.0425 (15)0.0593 (19)0.0512 (18)0.0000.0011 (13)0.000
C30.0450 (16)0.074 (2)0.064 (2)0.000−0.0062 (15)0.000
C40.0587 (19)0.102 (3)0.0478 (19)0.000−0.0054 (16)0.000
C50.0505 (18)0.097 (3)0.055 (2)0.0000.0091 (15)0.000
C60.0389 (15)0.078 (2)0.0579 (19)0.0000.0108 (13)0.000
C70.0624 (19)0.0541 (19)0.0499 (18)0.0000.0033 (15)0.000
C80.126 (3)0.121 (4)0.053 (2)0.0000.023 (2)0.000

Geometric parameters (Å, °)

S1—C71.682 (3)C1—C61.460 (4)
N1—C21.335 (3)C2—H20.9300
N1—C31.340 (3)C3—C41.367 (4)
N2—C61.273 (4)C3—H3A0.9300
N2—N31.382 (3)C4—C51.385 (4)
N3—C71.361 (4)C4—H4A0.9300
N3—H30.899 (10)C5—H50.9300
N4—C71.334 (4)C6—H60.9300
N4—C81.463 (4)C8—H8A0.9600
N4—H40.898 (10)C8—H8B0.9600
C1—C51.379 (4)C8—H8C0.9600
C1—C21.394 (4)
C2—N1—C3117.0 (2)C3—C4—H4A120.8
C6—N2—N3117.1 (2)C5—C4—H4A120.8
C7—N3—N2118.9 (2)C1—C5—C4119.9 (3)
C7—N3—H3124 (2)C1—C5—H5120.0
N2—N3—H3117 (2)C4—C5—H5120.0
C7—N4—C8124.7 (3)N2—C6—C1121.7 (3)
C7—N4—H4117 (2)N2—C6—H6119.2
C8—N4—H4119 (2)C1—C6—H6119.2
C5—C1—C2117.0 (2)N4—C7—N3114.7 (3)
C5—C1—C6121.1 (3)N4—C7—S1125.2 (2)
C2—C1—C6121.9 (3)N3—C7—S1120.1 (2)
N1—C2—C1124.1 (2)N4—C8—H8A109.5
N1—C2—H2118.0N4—C8—H8B109.5
C1—C2—H2118.0H8A—C8—H8B109.5
N1—C3—C4123.6 (3)N4—C8—H8C109.5
N1—C3—H3A118.2H8A—C8—H8C109.5
C4—C3—H3A118.2H8B—C8—H8C109.5
C3—C4—C5118.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···N20.90 (2)2.14 (3)2.585 (4)109 (2)
N3—H3···N1i0.90 (1)2.09 (1)2.989 (3)176 (3)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5755).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct.559, 99–106.
  • Bernhardt, P. V., Caldwell, L. M., Lovejoy, D. B. & Richardson, D. R. (2003). Acta Cryst. C59, o629–o633. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casas, J. S., Castineiras, A., Lobana, T. S., Sanchez, A., Sordo, J. & Garcia-Tasende, M. S. (2001). J. Chem. Crystallogr.31, 329–332.
  • Jouad, E. M., Allain, M., Khan, M. A. & Bouet, G. M. (2002). J. Mol. Struct.604, 205–209.
  • Karakurt, T., Dinçer, M., Yılmaz, I. & Çukurovalı, A. (2003). Acta Cryst. E59, o1997–o1999.
  • Sampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346–o348. [PubMed]
  • Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, o1336–o1338.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem.27, 724–731.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography