PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3190.
Published online 2010 November 17. doi:  10.1107/S1600536810046416
PMCID: PMC3011561

4-Chloro­benzoic acid–quinoline (1/1)

Abstract

In the title compound, C7H5ClO2·C9H7N, the 4-chloro­benzoic acid mol­ecule is almost planar, with a dihedral angle of 2.9 (14)° between the carb­oxy group and the benzene ring. In the crystal, the two components are connected by an O—H(...)N hydrogen bond. In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of the benzoic acid is 44.75 (4)°. The two components are further linked by inter­molecular C—H(...)O hydrogen bonds, forming a layer parallel to the ab plane.

Related literature

For related structures, see, for example: Gotoh & Ishida (2007 [triangle], 2009 [triangle]); Ishida & Fukunaga (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3190-scheme1.jpg

Experimental

Crystal data

  • C7H5ClO2·C9H7N
  • M r = 285.73
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3190-efi1.jpg
  • a = 13.2385 (5) Å
  • b = 3.8307 (2) Å
  • c = 26.2464 (9) Å
  • V = 1331.03 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 185 K
  • 0.30 × 0.26 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.933, T max = 0.950
  • 21775 measured reflections
  • 3907 independent reflections
  • 3777 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.071
  • S = 1.07
  • 3907 reflections
  • 185 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1909 Friedel pairs
  • Flack parameter: 0.03 (4)

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997) [triangle]; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046416/im2244sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046416/im2244Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

supplementary crystallographic information

Comment

The title compound was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–benzoic acid systems (Gotoh & Ishida, 2007, 2009; Ishida & Fukunaga, 2004).

In the crystal structure of the title compound, no acid-base interaction involving proton transfer is observed between the two components, which are are linked by an O—H···N hydrogen bond (Table 1 and Fig. 1). In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of the benzoic acid is 44.75 (4)°. The carboxy plane makes dihedral angles of 42.2 (1) and 2.9 (14)°, respectively, with the quinoline ring system and the benzene ring. The two components are further linked by intermolecular C—H···O hydrogen bonds (Table 1), forming a layer parallel to the ab plane (Fig. 2). No significant interaction is observed between the layers.

Experimental

Single crystals were obtained by slow evaporation from an acetonitrile solution (65 ml) of 4-chlorobenzoic acid (156 mg) and quinoline (167 mg) at room temperature.

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The O-bound H atom was found in a difference Fourier map and refined isotropically. The refined O—H distance is 0.84 (2) Å.

Figures

Fig. 1.
Molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed line indicates the O—H···N hydrogen bond.
Fig. 2.
Packing diagram of the title compound, showing the layered structure formed by O—H···N and C—H···O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. ...

Crystal data

C7H5ClO2·C9H7NF(000) = 592.00
Mr = 285.73Dx = 1.426 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2acCell parameters from 20625 reflections
a = 13.2385 (5) Åθ = 3.1–30.0°
b = 3.8307 (2) ŵ = 0.29 mm1
c = 26.2464 (9) ÅT = 185 K
V = 1331.03 (10) Å3Block, colorless
Z = 40.30 × 0.26 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID II diffractometer3777 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.017
ω scansθmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999)h = −18→17
Tmin = 0.933, Tmax = 0.950k = −5→5
21775 measured reflectionsl = −36→36
3907 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0837P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3907 reflectionsΔρmax = 0.29 e Å3
185 parametersΔρmin = −0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1909 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.16026 (2)1.03905 (7)0.806049 (12)0.03662 (8)
O10.40632 (7)0.4457 (3)0.60147 (3)0.03433 (19)
O20.53847 (6)0.6264 (3)0.64747 (3)0.03630 (19)
N10.54986 (7)0.2446 (2)0.53696 (4)0.02677 (17)
C10.37402 (7)0.6999 (3)0.68200 (4)0.02308 (18)
C20.41115 (8)0.8623 (3)0.72551 (4)0.02695 (19)
H20.48170.90150.72890.032*
C30.34608 (9)0.9674 (3)0.76389 (4)0.0283 (2)
H30.37131.07960.79360.034*
C40.24300 (9)0.9056 (3)0.75818 (4)0.02659 (19)
C50.20408 (8)0.7420 (3)0.71540 (4)0.0284 (2)
H50.13360.70100.71230.034*
C60.27012 (7)0.6389 (3)0.67712 (4)0.02561 (19)
H60.24470.52660.64750.031*
C70.44796 (8)0.5884 (3)0.64212 (4)0.02529 (19)
C80.63210 (9)0.1038 (3)0.55654 (5)0.0312 (2)
H80.63460.06850.59230.037*
C90.71666 (9)0.0024 (3)0.52725 (5)0.0323 (2)
H90.7742−0.09890.54300.039*
C100.71388 (8)0.0531 (3)0.47574 (5)0.0297 (2)
H100.7696−0.01440.45520.036*
C110.62751 (7)0.2070 (3)0.45316 (4)0.02400 (18)
C120.61876 (9)0.2723 (3)0.40025 (4)0.0304 (2)
H120.67300.21400.37810.037*
C130.53272 (10)0.4190 (3)0.38070 (4)0.0331 (2)
H130.52750.45980.34510.040*
C140.45165 (10)0.5100 (3)0.41306 (5)0.0314 (2)
H140.39220.61060.39900.038*
C150.45801 (8)0.4545 (3)0.46454 (5)0.0272 (2)
H150.40350.51890.48610.033*
C160.54610 (7)0.3005 (2)0.48551 (4)0.02275 (18)
H10.4522 (17)0.392 (6)0.5808 (9)0.061 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.04236 (14)0.03938 (14)0.02811 (12)0.00840 (10)0.00809 (12)−0.00104 (13)
O10.0260 (4)0.0509 (5)0.0261 (4)−0.0014 (3)0.0017 (3)−0.0079 (3)
O20.0238 (4)0.0525 (5)0.0326 (4)−0.0001 (4)−0.0006 (3)−0.0010 (4)
N10.0264 (4)0.0293 (4)0.0246 (4)−0.0015 (3)0.0013 (3)−0.0015 (3)
C10.0232 (4)0.0249 (4)0.0211 (4)0.0006 (3)−0.0009 (4)0.0027 (3)
C20.0265 (4)0.0305 (5)0.0238 (4)−0.0040 (4)−0.0027 (4)0.0023 (4)
C30.0356 (5)0.0272 (5)0.0221 (5)−0.0033 (4)−0.0037 (4)0.0006 (4)
C40.0332 (5)0.0246 (4)0.0220 (4)0.0041 (4)0.0035 (4)0.0021 (3)
C50.0251 (5)0.0320 (5)0.0280 (5)0.0017 (4)−0.0015 (4)0.0004 (4)
C60.0238 (4)0.0303 (5)0.0228 (4)0.0014 (4)−0.0034 (4)−0.0003 (4)
C70.0255 (5)0.0281 (4)0.0222 (4)0.0013 (4)−0.0006 (4)0.0038 (3)
C80.0330 (5)0.0319 (5)0.0286 (5)−0.0034 (4)−0.0030 (4)0.0018 (4)
C90.0260 (5)0.0303 (5)0.0406 (7)0.0021 (4)−0.0066 (5)−0.0001 (4)
C100.0225 (4)0.0278 (5)0.0387 (6)0.0006 (4)0.0022 (4)−0.0047 (4)
C110.0220 (4)0.0229 (4)0.0271 (4)−0.0034 (3)0.0022 (4)−0.0043 (3)
C120.0330 (5)0.0318 (5)0.0266 (5)−0.0053 (4)0.0060 (4)−0.0050 (4)
C130.0427 (6)0.0319 (5)0.0248 (5)−0.0065 (4)−0.0016 (5)0.0007 (4)
C140.0325 (5)0.0290 (5)0.0328 (6)−0.0008 (4)−0.0064 (4)0.0016 (4)
C150.0240 (5)0.0268 (5)0.0308 (5)0.0018 (4)0.0004 (4)−0.0016 (4)
C160.0228 (4)0.0210 (4)0.0245 (4)−0.0028 (3)0.0019 (4)−0.0022 (3)

Geometric parameters (Å, °)

Cl1—C41.7434 (11)C8—C91.4123 (18)
O1—C71.3194 (14)C8—H80.9500
O1—H10.84 (2)C9—C101.3666 (18)
O2—C71.2151 (14)C9—H90.9500
N1—C81.3194 (15)C10—C111.4162 (15)
N1—C161.3681 (13)C10—H100.9500
C1—C21.3903 (14)C11—C121.4160 (15)
C1—C61.4010 (14)C11—C161.4179 (13)
C1—C71.4953 (14)C12—C131.3697 (18)
C2—C31.3854 (16)C12—H120.9500
C2—H20.9500C13—C141.4125 (18)
C3—C41.3931 (16)C13—H130.9500
C3—H30.9500C14—C151.3703 (16)
C4—C51.3854 (16)C14—H140.9500
C5—C61.3891 (15)C15—C161.4180 (14)
C5—H50.9500C15—H150.9500
C6—H60.9500
C7—O1—H1108.7 (15)C9—C8—H8118.2
C8—N1—C16118.58 (10)C10—C9—C8118.55 (11)
C2—C1—C6119.79 (9)C10—C9—H9120.7
C2—C1—C7118.11 (9)C8—C9—H9120.7
C6—C1—C7122.08 (9)C9—C10—C11119.66 (10)
C3—C2—C1120.50 (10)C9—C10—H10120.2
C3—C2—H2119.8C11—C10—H10120.2
C1—C2—H2119.8C12—C11—C10123.36 (10)
C2—C3—C4118.78 (10)C12—C11—C16118.71 (10)
C2—C3—H3120.6C10—C11—C16117.92 (10)
C4—C3—H3120.6C13—C12—C11120.53 (10)
C5—C4—C3121.90 (10)C13—C12—H12119.7
C5—C4—Cl1118.89 (9)C11—C12—H12119.7
C3—C4—Cl1119.21 (9)C12—C13—C14120.52 (11)
C4—C5—C6118.74 (10)C12—C13—H13119.7
C4—C5—H5120.6C14—C13—H13119.7
C6—C5—H5120.6C15—C14—C13120.52 (11)
C5—C6—C1120.29 (10)C15—C14—H14119.7
C5—C6—H6119.9C13—C14—H14119.7
C1—C6—H6119.9C14—C15—C16119.86 (11)
O2—C7—O1123.72 (11)C14—C15—H15120.1
O2—C7—C1122.03 (10)C16—C15—H15120.1
O1—C7—C1114.25 (9)N1—C16—C11121.59 (9)
N1—C8—C9123.68 (11)N1—C16—C15118.55 (9)
N1—C8—H8118.2C11—C16—C15119.85 (9)
C6—C1—C2—C3−0.61 (16)C8—C9—C10—C110.47 (17)
C7—C1—C2—C3−179.29 (10)C9—C10—C11—C12179.31 (11)
C1—C2—C3—C40.35 (16)C9—C10—C11—C16−0.50 (15)
C2—C3—C4—C50.13 (16)C10—C11—C12—C13179.38 (10)
C2—C3—C4—Cl1−179.61 (8)C16—C11—C12—C13−0.81 (15)
C3—C4—C5—C6−0.34 (16)C11—C12—C13—C140.51 (17)
Cl1—C4—C5—C6179.40 (8)C12—C13—C14—C150.29 (18)
C4—C5—C6—C10.07 (16)C13—C14—C15—C16−0.77 (17)
C2—C1—C6—C50.40 (16)C8—N1—C16—C110.75 (15)
C7—C1—C6—C5179.02 (10)C8—N1—C16—C15−179.50 (10)
C2—C1—C7—O22.21 (16)C12—C11—C16—N1−179.93 (9)
C6—C1—C7—O2−176.43 (11)C10—C11—C16—N1−0.11 (14)
C2—C1—C7—O1−178.14 (10)C12—C11—C16—C150.33 (14)
C6—C1—C7—O13.21 (14)C10—C11—C16—C15−179.85 (9)
C16—N1—C8—C9−0.81 (17)C14—C15—C16—N1−179.29 (10)
N1—C8—C9—C100.20 (18)C14—C15—C16—C110.45 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.82 (2)2.659 (1)176 (2)
C5—H5···O2i0.952.463.159 (1)130
C8—H8···O2ii0.952.573.252 (2)129

Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2244).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gotoh, K. & Ishida, H. (2007). Acta Cryst. E63, o4500.
  • Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538. [PubMed]
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Ishida, H. & Fukunaga, T. (2004). Acta Cryst. E60, o1664–o1665.
  • Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography