PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1598.
Published online 2010 November 20. doi:  10.1107/S1600536810046787
PMCID: PMC3011549

[1,1-(Butane-1,4-diyl)-2,3-dicyclohexylguanidinato]dimethylaluminum(III)

Abstract

In the crystal structure of the title complex, [Al(CH3)2(C17H30N3)], the AlIII cation is coordinated by two methyl ligands and two N atoms from the guanidinato ligand in a distorted tetra­hedral geometry. The dihedral angle between the CN2 and AlC2 planes is 85.37 (2)°. The two N atoms of the guanidinato ligand exhibit an almost uniform affinity to the metal atom.

Related literature

For related guanidinato compounds, see: Chandra et al. (1970 [triangle]); Coles & Hitchcock (2004 [triangle]); Corey et al. (2006 [triangle]); Zhou et al. (2007 [triangle]). For related ortho metalation reactions, see: Kondo et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1598-scheme1.jpg

Experimental

Crystal data

  • [Al(CH3)2(C17H30N3)]
  • M r = 333.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1598-efi1.jpg
  • a = 18.263 (4) Å
  • b = 10.596 (2) Å
  • c = 10.449 (2) Å
  • V = 2022.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.959, T max = 0.969
  • 7156 measured reflections
  • 1772 independent reflections
  • 1630 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095
  • wR(F 2) = 0.232
  • S = 1.42
  • 1772 reflections
  • 107 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046787/jh2223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046787/jh2223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was carried out under the sponsorship of the Nature Science Foundation of Shanxi Province (2008012013-2).

supplementary crystallographic information

Comment

Since the first guanidinato complexes have been reported in 1970 by Lappert et al. (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in Ring-Opening Polymerisation (Coles & Hitchcock, 2004). It implied that the guanidinato complex would behave better in catalysis application.

There has been a great deal of research in directed ortho metalation reactions (Kondo et al., 2007). We had expected guanidinato lithium, the result of the addition of N,N'-dicyclohexyl carbodiimide with N-tetrahydropyrrolyl lithium, when reacting with trimethyl aluminum, to produced a new kind of complex containing Al and Li atoms. However, X-ray diffraction on the complex obtained in the reaction revealed that the Li atom was replaced by Al atom surprisingly. Its molecular structure is shown in Fig. 1. In the molecular structure of the complex, the metal atom is chelated with the guanidinato ligand. The four-coordinate Al(III) center demonstrates a highly distorted tetrahedral geometry. The distances from the two N atoms to Al atom are almost equal [N1-Al: 1.918 (4) Å, N2-Al: 1.925 (4) Å]. It indicates that the two N atoms of guanidinato ligand exhibit almost uniform affinity to the metal center.

Experimental

A solution of N-tetrahydropyrrolyl lithium in diethylether (0.232g, 3mmol) was added dropwise with stirring at 273K to a solution of 0.619g (3mmol) of N, N'-dicyclohexyl carbodiimide in ether. The mixture was warmed to room temperature and stirred for 2h. A 2M solution of trimethylaluminum in heaxene (1.5mL, 3mmol) was added at 195K to the mixed solution. The mixture was warmed to room temperature and stirred for 12h. Concentration of the filtrate under reduced pressure produced the colorless crystals suitable for X-ray analysis 3 days later (yield 0.620g, 62%).

Refinement

Positional parameters of all H atoms were calculated geometrically.

Figures

Fig. 1.
The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

[Al(CH3)2(C17H30N3)]Dx = 1.095 Mg m3
Mr = 333.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 4606 reflections
a = 18.263 (4) Åθ = 3.0–27.0°
b = 10.596 (2) ŵ = 0.11 mm1
c = 10.449 (2) ÅT = 293 K
V = 2022.0 (7) Å3Block, colorless
Z = 40.40 × 0.30 × 0.30 mm
F(000) = 736

Data collection

Bruker SMART CCD area-detector diffractometer1772 independent reflections
Radiation source: fine-focus sealed tube1630 reflections with I > 2σ(I)
graphiteRint = 0.059
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.959, Tmax = 0.969k = −12→7
7156 measured reflectionsl = −11→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.42w = 1/[σ2(Fo2) + (0.P)2 + 5.155P] where P = (Fo2 + 2Fc2)/3
1772 reflections(Δ/σ)max = 0.005
107 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Al0.50000.29276 (18)0.25000.0381 (6)
N10.45266 (19)0.1440 (3)0.1850 (3)0.0310 (8)
N30.5000−0.0569 (5)0.25000.0397 (13)
C10.50000.0706 (6)0.25000.0318 (13)
C20.3760 (2)0.1118 (4)0.1598 (4)0.0334 (10)
H20.37440.04150.09890.040*
C30.3350 (3)0.0733 (5)0.2815 (5)0.0418 (12)
H3A0.3575−0.00190.31700.050*
H3B0.33920.14020.34440.050*
C40.2546 (3)0.0474 (5)0.2557 (7)0.0611 (15)
H4A0.23020.02700.33550.073*
H4B0.2501−0.02470.19910.073*
C50.2177 (3)0.1614 (6)0.1948 (6)0.0569 (15)
H5A0.16730.14070.17430.068*
H5B0.21750.23090.25510.068*
C60.2573 (3)0.2010 (6)0.0742 (5)0.0539 (14)
H6A0.23490.27700.04050.065*
H6B0.25250.13520.01020.065*
C70.3384 (2)0.2255 (5)0.1001 (5)0.0435 (12)
H7A0.36260.24650.02030.052*
H7B0.34320.29720.15710.052*
C140.4666 (3)−0.1349 (4)0.1484 (5)0.0473 (13)
H14A0.4815−0.10660.06410.057*
H14B0.4136−0.13380.15380.057*
C150.4971 (3)−0.2657 (5)0.1782 (6)0.0613 (16)
H15A0.4642−0.33140.14860.074*
H15B0.5447−0.27770.13880.074*
C180.4388 (3)0.3932 (5)0.3656 (6)0.0586 (16)
H18A0.40760.33820.41410.088*
H18B0.40930.45050.31650.088*
H18C0.46950.44030.42290.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Al0.0304 (10)0.0312 (10)0.0526 (12)0.000−0.0093 (9)0.000
N10.0254 (17)0.0324 (18)0.0351 (19)−0.0015 (15)0.0006 (15)0.0007 (16)
N30.037 (3)0.033 (3)0.049 (3)0.0000.007 (3)0.000
C10.032 (3)0.032 (3)0.032 (3)0.0000.010 (3)0.000
C20.029 (2)0.037 (2)0.034 (2)−0.0060 (18)0.0002 (18)−0.0059 (19)
C30.036 (2)0.043 (3)0.047 (3)0.004 (2)0.006 (2)0.009 (2)
C40.033 (2)0.057 (3)0.094 (4)−0.005 (2)0.011 (3)0.020 (3)
C50.026 (2)0.061 (3)0.084 (4)−0.002 (2)−0.001 (3)0.006 (3)
C60.037 (3)0.070 (4)0.055 (3)0.001 (3)−0.014 (2)0.000 (3)
C70.032 (2)0.056 (3)0.042 (2)0.000 (2)−0.006 (2)0.013 (2)
C140.051 (3)0.037 (3)0.054 (3)−0.009 (2)0.018 (2)−0.012 (2)
C150.057 (3)0.036 (2)0.091 (4)−0.006 (3)0.035 (3)−0.012 (3)
C180.049 (3)0.048 (3)0.079 (4)0.011 (3)−0.019 (3)−0.025 (3)

Geometric parameters (Å, °)

Al—N11.922 (4)C4—H4B0.9700
Al—N1i1.922 (4)C5—C61.512 (8)
Al—C18i1.961 (6)C5—H5A0.9700
Al—C181.961 (6)C5—H5B0.9700
N1—C11.346 (5)C6—C71.528 (7)
N1—C21.465 (5)C6—H6A0.9700
N3—C11.351 (8)C6—H6B0.9700
N3—C141.477 (6)C7—H7A0.9700
N3—C14i1.477 (6)C7—H7B0.9700
C1—N1i1.346 (5)C14—C151.526 (7)
C2—C71.520 (6)C14—H14A0.9700
C2—C31.531 (6)C14—H14B0.9700
C2—H20.9800C15—C15i1.505 (13)
C3—C41.517 (7)C15—H15A0.9700
C3—H3A0.9700C15—H15B0.9700
C3—H3B0.9700C18—H18A0.9600
C4—C51.522 (7)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
N1—Al—N1i69.8 (2)C4—C5—H5A109.5
N1—Al—C18i119.0 (2)C6—C5—H5B109.5
N1i—Al—C18i114.0 (2)C4—C5—H5B109.5
N1—Al—C18114.0 (2)H5A—C5—H5B108.0
N1i—Al—C18119.0 (2)C5—C6—C7111.3 (4)
C18i—Al—C18114.2 (4)C5—C6—H6A109.4
C1—N1—C2124.8 (3)C7—C6—H6A109.4
C1—N1—Al90.4 (3)C5—C6—H6B109.4
C2—N1—Al133.2 (3)C7—C6—H6B109.4
C1—N3—C14124.0 (3)H6A—C6—H6B108.0
C1—N3—C14i124.0 (3)C2—C7—C6112.1 (4)
C14—N3—C14i112.0 (5)C2—C7—H7A109.2
N1i—C1—N1109.4 (5)C6—C7—H7A109.2
N1i—C1—N3125.3 (3)C2—C7—H7B109.2
N1—C1—N3125.3 (3)C6—C7—H7B109.2
N1—C2—C7108.7 (3)H7A—C7—H7B107.9
N1—C2—C3112.3 (4)N3—C14—C15102.2 (5)
C7—C2—C3109.3 (4)N3—C14—H14A111.3
N1—C2—H2108.8C15—C14—H14A111.3
C7—C2—H2108.8N3—C14—H14B111.3
C3—C2—H2108.8C15—C14—H14B111.3
C4—C3—C2111.9 (4)H14A—C14—H14B109.2
C4—C3—H3A109.2C15i—C15—C14103.2 (3)
C2—C3—H3A109.2C15i—C15—H15A111.1
C4—C3—H3B109.2C14—C15—H15A111.1
C2—C3—H3B109.2C15i—C15—H15B111.1
H3A—C3—H3B107.9C14—C15—H15B111.1
C3—C4—C5111.0 (4)H15A—C15—H15B109.1
C3—C4—H4A109.4Al—C18—H18A109.5
C5—C4—H4A109.4Al—C18—H18B109.5
C3—C4—H4B109.4H18A—C18—H18B109.5
C5—C4—H4B109.4Al—C18—H18C109.5
H4A—C4—H4B108.0H18A—C18—H18C109.5
C6—C5—C4110.9 (5)H18B—C18—H18C109.5
C6—C5—H5A109.5
N1i—Al—N1—C10.0Al—N1—C2—C740.9 (5)
C18i—Al—N1—C1106.9 (2)C1—N1—C2—C351.3 (5)
C18—Al—N1—C1−113.6 (2)Al—N1—C2—C3−80.2 (5)
N1i—Al—N1—C2142.0 (5)N1—C2—C3—C4176.7 (4)
C18i—Al—N1—C2−111.0 (4)C7—C2—C3—C455.9 (5)
C18—Al—N1—C228.4 (5)C2—C3—C4—C5−56.6 (6)
C2—N1—C1—N1i−146.9 (4)C3—C4—C5—C655.6 (7)
Al—N1—C1—N1i0.0C4—C5—C6—C7−55.1 (6)
C2—N1—C1—N333.1 (4)N1—C2—C7—C6−178.3 (4)
Al—N1—C1—N3180.0C3—C2—C7—C6−55.4 (5)
C14—N3—C1—N1i−158.0 (3)C5—C6—C7—C256.0 (6)
C14i—N3—C1—N1i22.0 (3)C1—N3—C14—C15167.3 (2)
C14—N3—C1—N122.0 (3)C14i—N3—C14—C15−12.7 (2)
C14i—N3—C1—N1−158.0 (3)N3—C14—C15—C15i33.5 (6)
C1—N1—C2—C7172.4 (4)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2223).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc pp. 2550–2558.
  • Coles, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem 13, 2662–2672.
  • Corey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem.45, 263–268. [PubMed]
  • Kondo, Y., Morey, J. V., Morgan, J. C., Naka, H., Nobuto, D., Raithby, P. R., Uchiyama, M. & Wheatley, A. E. H. (2007). J. Am. Chem. Soc 129, 12734–12738. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem.692, 5195–5202.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography