PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3206.
Published online 2010 November 17. doi:  10.1107/S1600536810046520
PMCID: PMC3011547

(Z)-N-[3-(4-Bromo­benzo­yl)-1,3-thia­zolidin-2-yl­idene]cyanamide

Abstract

In the title compound, C11H8BrN3OS, the dihedral angle between the benzene and thia­zolidine rings is 63.4 (2)°. Inter­molecular C—H(...)N inter­actions help to stabilize the crystal structure.

Related literature

For related structures, see: Wang et al. (2008 [triangle]); Liu & Li (2009 [triangle]); Xie & Li (2010 [triangle]). For the biological activity of thia­zolidine-containing compounds, see: Iwata et al. (1988 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3206-scheme1.jpg

Experimental

Crystal data

  • C11H8BrN3OS
  • M r = 310.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3206-efi1.jpg
  • a = 16.579 (3) Å
  • b = 5.6471 (11) Å
  • c = 13.611 (3) Å
  • β = 112.91 (3)°
  • V = 1173.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.67 mm−1
  • T = 173 K
  • 0.25 × 0.20 × 0.06 mm

Data collection

  • Rigaku Mercury CCD/AFC diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007 [triangle]) T min = 0.461, T max = 0.810
  • 8232 measured reflections
  • 2067 independent reflections
  • 1960 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.28
  • 2067 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046520/hg2746sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046520/hg2746Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988). Here, we report the crystal structure of (I).

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C8—C10/N1/S2) rings is 63.4 (2) °. The intermolecular C—H···N hydrogen bonds stabilize the structure.

Experimental

A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), 4-bromobenzoyl chloride (2.19 g, 10 mmol) and (1.01 g, 10 mmol) triethylamine was refluxed in absolute acetone (25 ml) for 3 h. On cooling, the product crystallized, was filtered, and recrystallized from absolute EtOH; yield 2.48 g (80.0%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C11H8BrN3OSF(000) = 616
Mr = 310.17Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3665 reflections
a = 16.579 (3) Åθ = 1.3–27.5°
b = 5.6471 (11) ŵ = 3.67 mm1
c = 13.611 (3) ÅT = 173 K
β = 112.91 (3)°Plate, colorless
V = 1173.9 (4) Å30.25 × 0.20 × 0.06 mm
Z = 4

Data collection

Rigaku Mercury CCD/AFC diffractometer2067 independent reflections
Radiation source: Sealed Tube1960 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.038
[var phi] and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007)h = −17→19
Tmin = 0.461, Tmax = 0.810k = −6→6
8232 measured reflectionsl = −16→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.28w = 1/[σ2(Fo2) + (0.054P)2 + 0.437P] where P = (Fo2 + 2Fc2)/3
2067 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.46599 (2)0.71386 (7)0.56642 (3)0.03845 (19)
S10.07775 (6)0.52236 (16)0.83336 (8)0.0307 (2)
O10.26798 (18)1.1823 (4)0.8767 (2)0.0362 (6)
N10.19890 (18)0.8299 (5)0.8536 (2)0.0268 (6)
N20.15701 (19)0.6055 (6)0.6966 (2)0.0316 (7)
N30.0788 (2)0.2687 (6)0.5834 (3)0.0483 (10)
C10.3110 (2)1.0740 (6)0.6926 (3)0.0281 (7)
H1A0.28431.22150.68450.034*
C20.3582 (2)1.0153 (6)0.6309 (3)0.0288 (8)
H2B0.36141.11930.57960.035*
C30.3999 (2)0.7995 (6)0.6478 (3)0.0267 (8)
C40.3960 (2)0.6399 (6)0.7235 (3)0.0280 (8)
H4A0.42610.49690.73470.034*
C50.3469 (2)0.6969 (6)0.7817 (3)0.0274 (8)
H5A0.34270.59030.83150.033*
C60.3036 (2)0.9141 (6)0.7661 (3)0.0251 (7)
C70.2562 (2)0.9906 (6)0.8339 (3)0.0276 (8)
C80.1669 (2)0.8942 (7)0.9375 (3)0.0323 (8)
H8A0.12311.01820.91260.039*
H8B0.21480.94921.00110.039*
C90.1273 (2)0.6690 (7)0.9608 (3)0.0332 (8)
H9A0.08370.70590.98970.040*
H9B0.17230.57021.01140.040*
C100.1498 (2)0.6544 (6)0.7864 (3)0.0259 (7)
C110.1122 (2)0.4235 (7)0.6401 (3)0.0339 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0425 (3)0.0437 (3)0.0358 (3)−0.00069 (16)0.0225 (2)−0.00648 (16)
S10.0292 (5)0.0296 (5)0.0375 (5)−0.0023 (4)0.0175 (4)0.0020 (4)
O10.0422 (15)0.0270 (14)0.0456 (17)−0.0066 (11)0.0239 (13)−0.0086 (12)
N10.0302 (16)0.0262 (15)0.0266 (16)−0.0027 (12)0.0139 (13)−0.0015 (12)
N20.0337 (16)0.0340 (17)0.0317 (16)−0.0060 (13)0.0178 (14)−0.0028 (13)
N30.039 (2)0.053 (2)0.061 (3)−0.0111 (17)0.0277 (19)−0.0232 (19)
C10.0256 (17)0.0238 (17)0.035 (2)−0.0017 (14)0.0117 (15)0.0009 (15)
C20.0318 (18)0.0275 (18)0.0287 (19)−0.0046 (14)0.0135 (16)0.0031 (14)
C30.0254 (18)0.0306 (19)0.0246 (19)−0.0041 (14)0.0103 (15)−0.0045 (14)
C40.0283 (18)0.0237 (17)0.0308 (19)−0.0007 (14)0.0101 (15)−0.0020 (14)
C50.0295 (19)0.0231 (17)0.0283 (19)−0.0017 (14)0.0097 (16)0.0054 (14)
C60.0236 (16)0.0248 (17)0.0261 (18)−0.0061 (14)0.0088 (14)−0.0043 (14)
C70.0258 (17)0.0257 (18)0.0324 (19)−0.0002 (13)0.0125 (15)0.0017 (14)
C80.0360 (19)0.036 (2)0.030 (2)−0.0016 (16)0.0185 (16)−0.0030 (16)
C90.0301 (19)0.041 (2)0.032 (2)−0.0001 (16)0.0158 (17)0.0038 (17)
C100.0239 (17)0.0228 (16)0.0311 (19)0.0013 (14)0.0106 (15)0.0031 (14)
C110.0310 (19)0.035 (2)0.043 (2)−0.0043 (16)0.0229 (17)−0.0055 (18)

Geometric parameters (Å, °)

Br1—C31.899 (4)C2—C31.376 (5)
S1—C101.729 (3)C2—H2B0.9300
S1—C91.806 (4)C3—C41.389 (5)
O1—C71.208 (4)C4—C51.375 (5)
N1—C101.379 (4)C4—H4A0.9300
N1—C71.412 (4)C5—C61.396 (5)
N1—C81.480 (4)C5—H5A0.9300
N2—C101.302 (5)C6—C71.491 (5)
N2—C111.325 (5)C8—C91.520 (5)
N3—C111.154 (5)C8—H8A0.9700
C1—C61.388 (5)C8—H8B0.9700
C1—C21.392 (5)C9—H9A0.9700
C1—H1A0.9300C9—H9B0.9700
C10—S1—C992.05 (17)C1—C6—C7118.3 (3)
C10—N1—C7127.0 (3)C5—C6—C7121.7 (3)
C10—N1—C8113.1 (3)O1—C7—N1118.7 (3)
C7—N1—C8117.3 (3)O1—C7—C6122.1 (3)
C10—N2—C11118.3 (3)N1—C7—C6119.1 (3)
C6—C1—C2120.5 (3)N1—C8—C9105.6 (3)
C6—C1—H1A119.7N1—C8—H8A110.6
C2—C1—H1A119.7C9—C8—H8A110.6
C3—C2—C1118.3 (3)N1—C8—H8B110.6
C3—C2—H2B120.8C9—C8—H8B110.6
C1—C2—H2B120.8H8A—C8—H8B108.7
C2—C3—C4122.2 (3)C8—C9—S1104.8 (3)
C2—C3—Br1119.7 (3)C8—C9—H9A110.8
C4—C3—Br1118.1 (3)S1—C9—H9A110.8
C5—C4—C3118.9 (3)C8—C9—H9B110.8
C5—C4—H4A120.5S1—C9—H9B110.8
C3—C4—H4A120.5H9A—C9—H9B108.9
C4—C5—C6120.2 (3)N2—C10—N1122.0 (3)
C4—C5—H5A119.9N2—C10—S1125.7 (3)
C6—C5—H5A119.9N1—C10—S1112.2 (2)
C1—C6—C5119.8 (3)N3—C11—N2171.8 (4)
C6—C1—C2—C3−2.6 (5)C1—C6—C7—N1138.8 (3)
C1—C2—C3—C40.3 (5)C5—C6—C7—N1−47.2 (4)
C1—C2—C3—Br1−179.3 (2)C10—N1—C8—C930.9 (4)
C2—C3—C4—C51.7 (5)C7—N1—C8—C9−165.9 (3)
Br1—C3—C4—C5−178.7 (2)N1—C8—C9—S1−35.6 (3)
C3—C4—C5—C6−1.4 (5)C10—S1—C9—C826.6 (3)
C2—C1—C6—C52.9 (5)C11—N2—C10—N1175.3 (3)
C2—C1—C6—C7177.0 (3)C11—N2—C10—S1−7.3 (5)
C4—C5—C6—C1−0.8 (5)C7—N1—C10—N25.6 (5)
C4—C5—C6—C7−174.7 (3)C8—N1—C10—N2166.7 (3)
C10—N1—C7—O1151.9 (3)C7—N1—C10—S1−172.1 (3)
C8—N1—C7—O1−8.6 (5)C8—N1—C10—S1−11.0 (4)
C10—N1—C7—C6−31.3 (5)C9—S1—C10—N2172.4 (3)
C8—N1—C7—C6168.2 (3)C9—S1—C10—N1−10.0 (3)
C1—C6—C7—O1−44.6 (5)C10—N2—C11—N3−171 (3)
C5—C6—C7—O1129.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···N3i0.972.513.281 (5)137

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2746).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261–262.
  • Liu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645. [PMC free article] [PubMed]
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321. [PMC free article] [PubMed]
  • Xie, Y.-M. & Li, Y.-M. (2010). Acta Cryst. E66, o1158. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography