PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1617.
Published online 2010 November 20. doi:  10.1107/S1600536810047100
PMCID: PMC3011546

Azido­{2-[bis­(2-hy­droxy­eth­yl)amino]­ethano­lato-κ4 N,O,O′,O′′}cobalt(II)

Abstract

In the title complex, [Co(C6H14NO3)(N3)] or [Co(teaH2)N3], the CoII atom resides in a trigonal–bipymidal O3N2 environment formed by three O atoms and one N atom from a simply deprotonated tetra­dentate triethano­lamine ligand, and one N atom from an azide ligand. The O atoms define the equatorial plane whereas both N atoms are in axial positions. The mononuclear units are linked through O—H(...)O hydrogen-bonding inter­actions between the ethanol OH groups and the ethano­late O atom of a neighbouring complex into chains running parallel to [010].

Related literature

For general background to complexes including teaH3 ligands, see: Liu, Wang et al. (2008 [triangle]); Liu, Zhang et al. (2008 [triangle]). For CoII complexes with similar ligands, see: Malaestean et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1617-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H14NO3)(N3)]
  • M r = 249.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1617-efi1.jpg
  • a = 8.7752 (2) Å
  • b = 7.9373 (1) Å
  • c = 14.4097 (3) Å
  • β = 107.084 (1)°
  • V = 959.37 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.78 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku Saturn CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.708, T max = 0.823
  • 4004 measured reflections
  • 2179 independent reflections
  • 1253 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.089
  • S = 0.89
  • 2179 reflections
  • 135 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047100/wm2427sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047100/wm2427Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38).

supplementary crystallographic information

Comment

The design and synthesis of mononuclear compounds with strong anisotropy, potentially acting as single ion magnets, are of current interest. Podand-like or multi-dentate ligands, such as diethanolamine (deaH2) or triethanolamine (teaH3), have been employed though these ligands were also used to prepare other kinds of clusters (Liu, Wang et al., 2008; Liu, Zhang et al., 2008). In this work, we selected teaH3 as a capping ligand, and azide as another anion, generating complex (I), Co(N(CH2CH2OH)2(CH2CH2O))N3 [= Co(teaH2)N3].

In the structure of (I) each CoII atom is five-coordinate by three O atoms and one N atom from a simply deprotonated tetradentate triethanolamine ligand, and one N atom from an azide ligand in a trigonal-bipymidal coordination environment (Fig. 1). The O atoms define the equatorial plane whereas both N atoms sit in axial positions. The Co—N distances are 2.013 (3)—2.148 (3) Å, and the Co—O distances are 1.991 (2)–2.065 (2) Å. These bond length are in agreement with similar complexes with CoII in trigonal-pyramidal coordination (Malaestean et al., 2010).

The mononuclear Co(teaH2)N3 units are linked through O—H···O hydrogen bonding interactions between the ethanol OH groups and the ethanolate O atom of a neighbouring complex into chains running parallel to [010] (Fig. 2).

Experimental

Under stirring, 2.0 mmol teaH3, 4.0 mmol Et3N and 4.0 mmol NaN3 were added, one after another, into a 20 ml methanol solution containing 1.0 mol Co(ClO4)2.6H2O. The resulting solution was kept stirred for another hour, and then filtered. The filtrate was allowed to stand undisturbed in a sealed vessel. Crystallization took place during one week and gave crystals in a yield of 40% based on Co(ClO4)2.6H2O. The product was washed with methanol and dried in air.

Refinement

H1OA and H2OA were found in difference Fourier maps and were refined freely. All other H atoms were positioned geometrically as riding atoms, with C—H = 0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
View of the molecular structure of (I), showing the labelling of the atoms drawn with displacement ellipsoids at the 30% probability level. All H atoms have been omitted for clarity.
Fig. 2.
A view of the crystal packing along the c axis. Hydrogen bonds are indicated with dashed lines.

Crystal data

[Co(C6H14NO3)(N3)]F(000) = 516
Mr = 249.14Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2179 reflections
a = 8.7752 (2) Åθ = 3.4–27.5°
b = 7.9373 (1) ŵ = 1.78 mm1
c = 14.4097 (3) ÅT = 293 K
β = 107.084 (1)°Pillar, red
V = 959.37 (3) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn CCD diffractometer2179 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
graphiteRint = 0.055
Detector resolution: 0.76 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = −11→11
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −10→10
Tmin = 0.708, Tmax = 0.823l = −18→18
4004 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.89w = 1/[σ2(Fo2) + (0.0427P)2] where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.49520 (5)0.87496 (5)0.81512 (3)0.02597 (16)
C10.2117 (4)0.6897 (4)0.8302 (3)0.0438 (10)
H1A0.18990.62230.77160.053*
H1B0.11730.68860.85220.053*
C20.3480 (4)0.6158 (5)0.9063 (3)0.0405 (9)
H2A0.35230.66380.96900.049*
H2B0.33290.49510.90960.049*
C30.2225 (5)0.9829 (4)0.8818 (3)0.0424 (10)
H3A0.25550.92970.94510.051*
H3B0.10991.00920.86650.051*
C40.3151 (4)1.1428 (4)0.8848 (3)0.0362 (9)
H4A0.26191.21390.83010.043*
H4B0.32171.20400.94410.043*
C50.1604 (4)0.9162 (5)0.7086 (3)0.0423 (10)
H5A0.15621.03820.70490.051*
H5B0.05180.87450.69250.051*
C60.2386 (4)0.8496 (5)0.6363 (2)0.0361 (9)
H6A0.21380.73090.62490.043*
H6B0.19700.90860.57510.043*
N10.2476 (3)0.8648 (3)0.80846 (19)0.0254 (6)
N20.7314 (3)0.8811 (4)0.8330 (2)0.0405 (7)
N30.8273 (4)0.8233 (4)0.9028 (2)0.0388 (8)
N40.9226 (5)0.7663 (5)0.9675 (3)0.0703 (12)
O10.4947 (3)0.6485 (3)0.88538 (18)0.0332 (6)
O20.4718 (3)1.1008 (3)0.88087 (18)0.0344 (6)
O30.4087 (2)0.8714 (3)0.67098 (14)0.0269 (5)
H1OA0.508 (6)1.183 (7)0.863 (4)0.11 (2)*
H2OA0.525 (4)0.569 (4)0.870 (3)0.035 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0262 (2)0.0243 (2)0.0272 (2)−0.0003 (2)0.00739 (18)0.0007 (2)
C10.040 (2)0.0305 (19)0.064 (3)−0.0069 (17)0.021 (2)0.0004 (18)
C20.050 (2)0.0339 (19)0.046 (2)0.002 (2)0.0274 (19)0.0055 (19)
C30.044 (2)0.034 (2)0.059 (2)−0.0046 (18)0.030 (2)−0.0111 (19)
C40.042 (2)0.0266 (19)0.048 (2)−0.0025 (18)0.0257 (18)−0.0068 (17)
C50.029 (2)0.054 (3)0.043 (2)0.0035 (18)0.0095 (17)−0.0026 (18)
C60.0263 (19)0.045 (2)0.0335 (19)−0.0002 (17)0.0027 (16)−0.0022 (17)
N10.0282 (14)0.0220 (13)0.0280 (14)−0.0013 (13)0.0114 (12)−0.0021 (12)
N20.0264 (16)0.0488 (18)0.0465 (19)0.0014 (16)0.0112 (15)0.0126 (17)
N30.0272 (18)0.047 (2)0.045 (2)−0.0005 (15)0.0145 (16)−0.0082 (16)
N40.046 (2)0.107 (3)0.050 (2)0.024 (2)0.001 (2)0.008 (2)
O10.0377 (15)0.0227 (15)0.0420 (15)0.0045 (12)0.0163 (12)0.0026 (12)
O20.0372 (15)0.0274 (14)0.0411 (14)−0.0091 (12)0.0152 (11)−0.0053 (12)
O30.0265 (12)0.0302 (12)0.0252 (11)0.0039 (12)0.0093 (9)0.0022 (11)

Geometric parameters (Å, °)

Co1—O31.991 (2)C3—H3B0.9700
Co1—N22.013 (3)C4—O21.433 (4)
Co1—O12.064 (2)C4—H4A0.9700
Co1—O22.065 (2)C4—H4B0.9700
Co1—N12.148 (3)C5—N11.475 (4)
C1—N11.478 (4)C5—C61.502 (5)
C1—C21.486 (5)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—O31.439 (4)
C2—O11.430 (4)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700N2—N31.197 (4)
C3—N11.476 (4)N3—N41.147 (4)
C3—C41.501 (5)O1—H2OA0.74 (3)
C3—H3A0.9700O2—H1OA0.81 (5)
O3—Co1—N2101.32 (11)O2—C4—H4B110.0
O3—Co1—O1116.37 (10)C3—C4—H4B110.0
N2—Co1—O196.24 (12)H4A—C4—H4B108.3
O3—Co1—O2115.60 (10)N1—C5—C6111.6 (3)
N2—Co1—O299.08 (12)N1—C5—H5A109.3
O1—Co1—O2121.07 (10)C6—C5—H5A109.3
O3—Co1—N183.24 (9)N1—C5—H5B109.3
N2—Co1—N1175.37 (11)C6—C5—H5B109.3
O1—Co1—N180.87 (10)H5A—C5—H5B108.0
O2—Co1—N179.50 (10)O3—C6—C5110.8 (3)
N1—C1—C2110.6 (3)O3—C6—H6A109.5
N1—C1—H1A109.5C5—C6—H6A109.5
C2—C1—H1A109.5O3—C6—H6B109.5
N1—C1—H1B109.5C5—C6—H6B109.5
C2—C1—H1B109.5H6A—C6—H6B108.1
H1A—C1—H1B108.1C5—N1—C3112.2 (3)
O1—C2—C1110.6 (3)C5—N1—C1112.6 (3)
O1—C2—H2A109.5C3—N1—C1111.0 (3)
C1—C2—H2A109.5C5—N1—Co1105.15 (19)
O1—C2—H2B109.5C3—N1—Co1107.8 (2)
C1—C2—H2B109.5C1—N1—Co1107.6 (2)
H2A—C2—H2B108.1N3—N2—Co1122.8 (2)
N1—C3—C4111.4 (3)N4—N3—N2177.5 (4)
N1—C3—H3A109.4C2—O1—Co1113.2 (2)
C4—C3—H3A109.4C2—O1—H2OA109 (3)
N1—C3—H3B109.4Co1—O1—H2OA123 (3)
C4—C3—H3B109.4C4—O2—Co1116.5 (2)
H3A—C3—H3B108.0C4—O2—H1OA107 (4)
O2—C4—C3108.7 (3)Co1—O2—H1OA117 (4)
O2—C4—H4A110.0C6—O3—Co1113.77 (18)
C3—C4—H4A110.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1OA···O3i0.80 (6)1.80 (6)2.595 (3)176.90
O1—H2OA···O3ii0.74 (3)1.83 (3)2.573 (3)177.70

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2427).

References

  • Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Liu, T., Wang, B.-W., Chen, Y.-H., Wang, Z.-M. & Gao, S. (2008). Z. Anorg. Allg. Chem.634, 778–783.
  • Liu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2008). J. Am. Chem. Soc.130, 10500–10501. [PubMed]
  • Malaestean, I. L., Speldrich, M., Ellern, A., Baca, S. G. & Kögerler, P. (2010). Polyhedron, 29, 1990–1997.
  • Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography