PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1554.
Published online 2010 November 13. doi:  10.1107/S1600536810045411
PMCID: PMC3011537

Poly[[diaqua­(μ2-5,5-dioxodibenzo[b,d]thio­phene-3,7-dicarboxyl­ato)(μ2-ethyl­ene glycol)manganese(II)] dimethyl­acetamide solvate]

Abstract

In the title complex, {[Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NO}n, the MnII ion is six-coordinated in a trans-octa­hedral geometry by two carboxyl­ate O atoms from two 5,5-dioxodibenzo[b,d]thio­phene-3,7-dicarboxyl­ate (L) ligands in a monodentate mode, two O atoms from two ethyl­ene glycol (EG) mol­ecules and two aqua O atoms. The metal ions are linked by the EG and L ligands, forming two-dimensional coordination networks, which are associated into the three-dimensional structure through O—H(...)O hydrogen bonds.

Related literature

For the use of H2 L ligands in the construction of coordination polymers, including metal-organic frameworks with function­alized pores, see: Neofotistou et al. (2010 [triangle]). Kanaizuka et al. (2010 [triangle]). Yan et al. (2009 [triangle]). For the ligand synthesis, see: Neofotistou et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1554-scheme1.jpg

Experimental

Crystal data

  • [Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NO
  • M r = 542.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1554-efi6.jpg
  • a = 7.0564 (3) Å
  • b = 11.8142 (4) Å
  • c = 28.0008 (10) Å
  • β = 100.544 (1)°
  • V = 2294.89 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 296 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.811, T max = 0.931
  • 30673 measured reflections
  • 5716 independent reflections
  • 5221 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.083
  • S = 1.07
  • 5716 reflections
  • 335 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045411/fk2028sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045411/fk2028Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are thankful for financial support from the NSFC (20771038) and the Shanghai Leading Academic Discipline Project (B409).

supplementary crystallographic information

Comment

In this paper, we report the coordination and hydrogen-bond structure of the title complex (I) derived from S,S-dioxodibenzothiophen-3,7-dicarboxylic acid (H2L). These sulfone-functionalized dicarboxylic ligands have recently been used to construct coordination polymers, including metal-organic frameworks with functionalized pores (Kanaizuka et al. (2010); Neofotistou et al. (2010); Neofotistou et al. (2009); Yan et al. (2009)). The asymmetric unit of I contains a Mn(II) ion, an L ligand, two aqua ligands, an ethylene glycol (EG) ligand, and an N,N-dimethylacetamide (DMA) solvent molecule (Fig. 1). Each Mn atom resides in a trans-octahedral coordination geometry completed by two carboxylate O atoms (O1 and O3) from two L ligands, two O atoms (O7 and O8) from two EG molecules, and two O atoms (O9 and O10) from two water molecules. The Mn—O distances lie in the range of 2.1191 (12)–2.2253 (11) Å (Table 1). The L ligand binds two Mn atoms through two monodentate carboxylate groups, and the EG ligand also binds two Mn atoms through its two hydroxyl groups. Consequently, the metal ions are linked into a two-dimensional layer (Fig. 2). The carboxylate, hydroxyl, and aqua groups from the coordination sphere and the carbonyl group from the DMA molecule provide plenty of sites for hydrogen bonding (Table 2). Each uncoordinated carboxylate oxygen atom (O2 or O4) serves as a bifurcate acceptor to form an intralayer hydrogen bond with a coordinated aqua molecule and an interlayer one with a EG hydroxyl group from the neighboring layer. The oxygen atom (O11) of the DMA solvent is also bifurcately hydrogen-bonded, to two independent aqua ligands from different coordination layers. The above hydrogen bonds collaborate to assemble the two-dimensional coordination layers into a three-dimensional structure.

Experimental

The ligand was synthesized from dimethyl ester of 4,4'-biphenyldicarboxylic acid and H2SO4, 20%SO3 (oleum) according to the procedure for similar compounds (Neofotistou et al., 2009). The ligand (0.006 g, 0.03 mmol) and MnCl2.6H2O (0.006 g, 0.03 mmol) were dissolved under stirring in a mixture of ethylene glycol (1.0 ml) and DMA (2.0 ml). The resulting solution was left to stand at room temperature for 20 days to afford colorless block crystals of the title compound.

Refinement

All hydrogen atoms attached to carbon atoms were placed at calculated positions and refined with the riding model using AFIX 43 and AFIX 23 instructions for aromatic C—H and secondary CH2. The hydrogen atoms from EG and water were initially located from difference Fourier maps and refined isotropically with restraints on O—H distance (0.85 Å) and H—O—H angles.

Figures

Fig. 1.
Coordination enviroment in the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the H atoms attached to C are omitted for clarity. [Symmetry code: (i)-1/2 + x, 1/2 - y, 1/2 + z (ii) 1 ...
Fig. 2.
Two-dimensional layer connected through L and EG. The intralayer hydrogen bonds are shown as dot lines. The H atoms attached to C are omitted for clarity.

Crystal data

[Mn(C14H6O6S)(C2H6O2)(H2O)2]·C4H9NOF(000) = 1124
Mr = 542.41Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9208 reflections
a = 7.0564 (3) Åθ = 2.3–26°
b = 11.8142 (4) ŵ = 0.73 mm1
c = 28.0008 (10) ÅT = 296 K
β = 100.544 (1)°Columnar, colourless
V = 2294.89 (15) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer5716 independent reflections
Radiation source: fine-focus sealed tube5221 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −9→7
Tmin = 0.811, Tmax = 0.931k = −15→14
30673 measured reflectionsl = −37→36

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom and difmap
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.0425P)2 + 1.0021P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5716 reflectionsΔρmax = 0.32 e Å3
335 parametersΔρmin = −0.36 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.22688 (3)0.673463 (17)0.267191 (7)0.02227 (7)
C10.43784 (19)0.86846 (12)0.33374 (5)0.0236 (3)
C20.53981 (19)0.90349 (12)0.38359 (5)0.0225 (3)
C30.5765 (2)1.01741 (12)0.39461 (5)0.0249 (3)
H3A0.54331.07130.37030.030*
C40.5922 (2)0.82195 (11)0.41959 (5)0.0247 (3)
H4A0.57040.74540.41300.030*
C50.6613 (2)1.05261 (12)0.44092 (5)0.0247 (3)
H5A0.68421.12900.44760.030*
C60.67736 (19)0.85829 (12)0.46533 (5)0.0229 (3)
C70.71153 (19)0.97220 (11)0.47712 (5)0.0216 (2)
C80.79778 (19)0.98999 (11)0.52870 (5)0.0213 (2)
C90.8502 (2)1.09104 (11)0.55269 (5)0.0244 (3)
H9A0.83141.15960.53620.029*
C100.8262 (2)0.88924 (11)0.55495 (5)0.0229 (3)
C110.9316 (2)1.08823 (12)0.60187 (5)0.0242 (3)
H11A0.96871.15570.61800.029*
C120.90422 (19)0.88466 (12)0.60378 (5)0.0235 (3)
H12A0.91990.81610.62030.028*
C130.95877 (18)0.98663 (11)0.62747 (5)0.0215 (3)
C141.05227 (19)0.98394 (12)0.68052 (5)0.0224 (3)
O10.39522 (15)0.76549 (9)0.32753 (4)0.0290 (2)
O20.39864 (18)0.94438 (10)0.30224 (4)0.0366 (3)
O31.05942 (16)0.88879 (9)0.70073 (4)0.0316 (2)
O41.11941 (17)1.07339 (9)0.70058 (4)0.0339 (2)
O50.5980 (2)0.71159 (11)0.53019 (4)0.0437 (3)
O60.92266 (19)0.70701 (10)0.51083 (4)0.0411 (3)
S10.75616 (5)0.77206 (3)0.516692 (12)0.02602 (9)
C15−0.2116 (2)0.65002 (14)0.28938 (6)0.0334 (3)
H15A−0.27800.65710.31670.040*
H15B−0.18880.57020.28470.040*
C16−0.3383 (2)0.69648 (15)0.24442 (6)0.0334 (3)
H16A−0.36290.77610.24900.040*
H16B−0.27300.68940.21690.040*
O7−0.03049 (15)0.70750 (10)0.30054 (4)0.0312 (2)
H7−0.052 (3)0.777 (2)0.3005 (8)0.048 (6)*
O8−0.51664 (16)0.63629 (11)0.23467 (5)0.0381 (3)
H8−0.495 (3)0.5748 (15)0.2233 (8)0.052 (6)*
O90.1821 (2)0.83273 (10)0.23213 (5)0.0471 (3)
H9C0.135 (3)0.854 (2)0.2043 (6)0.056 (7)*
H9B0.246 (3)0.8828 (18)0.2484 (7)0.057 (7)*
O100.24423 (19)0.49977 (10)0.29494 (5)0.0352 (3)
H10C0.182 (3)0.474 (2)0.3150 (9)0.057 (7)*
H10B0.210 (4)0.463 (2)0.2701 (10)0.072 (9)*
C17−0.0751 (4)1.0498 (2)0.08416 (8)0.0639 (6)
H17A−0.18881.05910.09810.096*
H17B−0.11151.02810.05070.096*
H17C−0.00531.11990.08630.096*
C180.0504 (3)0.95932 (15)0.11144 (6)0.0391 (4)
C190.3395 (3)0.8464 (2)0.12584 (8)0.0578 (5)
H19A0.26000.78650.13440.087*
H19B0.41420.87820.15480.087*
H19C0.42440.81680.10570.087*
C200.2899 (5)0.9857 (2)0.05873 (11)0.0830 (9)
H20A0.20251.04370.04430.125*
H20B0.30050.92880.03490.125*
H20C0.41441.01840.07030.125*
O11−0.0072 (2)0.90934 (12)0.14522 (4)0.0461 (3)
N10.2175 (2)0.93427 (13)0.09933 (6)0.0440 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02329 (11)0.02213 (11)0.01900 (11)−0.00047 (7)−0.00245 (8)−0.00162 (7)
C10.0221 (6)0.0278 (7)0.0191 (6)−0.0016 (5)−0.0007 (5)−0.0006 (5)
C20.0211 (6)0.0267 (6)0.0184 (6)−0.0021 (5)0.0002 (5)−0.0018 (5)
C30.0283 (7)0.0253 (7)0.0193 (6)−0.0009 (5)−0.0004 (5)0.0015 (5)
C40.0268 (7)0.0227 (6)0.0228 (6)−0.0024 (5)−0.0006 (5)−0.0026 (5)
C50.0302 (7)0.0217 (6)0.0207 (6)−0.0010 (5)0.0009 (5)−0.0008 (5)
C60.0244 (6)0.0235 (6)0.0190 (6)0.0005 (5)−0.0006 (5)0.0014 (5)
C70.0212 (6)0.0247 (6)0.0177 (6)−0.0004 (5)0.0005 (5)−0.0012 (5)
C80.0216 (6)0.0236 (6)0.0178 (6)0.0000 (5)0.0013 (5)−0.0002 (5)
C90.0301 (7)0.0212 (6)0.0204 (6)0.0001 (5)0.0010 (5)0.0014 (5)
C100.0255 (6)0.0211 (6)0.0206 (6)−0.0014 (5)0.0006 (5)−0.0020 (5)
C110.0276 (6)0.0225 (6)0.0209 (6)−0.0011 (5)0.0004 (5)−0.0026 (5)
C120.0257 (6)0.0231 (6)0.0203 (6)0.0011 (5)0.0003 (5)0.0020 (5)
C130.0203 (6)0.0255 (6)0.0176 (6)0.0015 (5)0.0002 (5)−0.0005 (5)
C140.0213 (6)0.0256 (6)0.0187 (6)0.0031 (5)−0.0004 (5)−0.0007 (5)
O10.0348 (5)0.0260 (5)0.0221 (5)−0.0033 (4)−0.0054 (4)−0.0028 (4)
O20.0494 (7)0.0311 (6)0.0234 (5)−0.0091 (5)−0.0092 (5)0.0045 (4)
O30.0397 (6)0.0270 (5)0.0222 (5)−0.0004 (4)−0.0094 (4)0.0035 (4)
O40.0472 (6)0.0264 (5)0.0234 (5)−0.0010 (5)−0.0062 (4)−0.0033 (4)
O50.0572 (8)0.0372 (6)0.0347 (6)−0.0207 (6)0.0036 (5)0.0026 (5)
O60.0543 (7)0.0313 (6)0.0340 (6)0.0154 (5)−0.0022 (5)−0.0037 (5)
S10.03603 (19)0.01997 (16)0.01953 (16)−0.00206 (13)−0.00157 (13)−0.00020 (11)
C150.0273 (7)0.0319 (7)0.0406 (8)−0.0013 (6)0.0048 (6)0.0038 (6)
C160.0256 (7)0.0369 (8)0.0372 (8)−0.0023 (6)0.0044 (6)−0.0012 (6)
O70.0269 (5)0.0278 (5)0.0375 (6)0.0006 (4)0.0022 (4)−0.0058 (4)
O80.0257 (5)0.0373 (6)0.0516 (7)−0.0023 (5)0.0076 (5)−0.0186 (5)
O90.0779 (10)0.0270 (6)0.0266 (6)−0.0056 (6)−0.0164 (6)0.0035 (5)
O100.0474 (7)0.0284 (6)0.0280 (6)−0.0012 (5)0.0018 (5)0.0029 (5)
C170.0792 (16)0.0631 (14)0.0481 (12)0.0237 (12)0.0083 (11)0.0178 (10)
C180.0535 (10)0.0349 (8)0.0253 (7)0.0019 (7)−0.0021 (7)−0.0032 (6)
C190.0607 (13)0.0621 (13)0.0526 (12)0.0184 (11)0.0155 (10)0.0050 (10)
C200.103 (2)0.0651 (16)0.095 (2)0.0174 (15)0.0574 (18)0.0312 (15)
O110.0525 (8)0.0550 (8)0.0298 (6)0.0113 (6)0.0049 (5)0.0074 (5)
N10.0569 (10)0.0382 (8)0.0377 (8)0.0020 (7)0.0109 (7)−0.0011 (6)

Geometric parameters (Å, °)

Mn1—O92.1191 (12)C14—O31.2553 (17)
Mn1—O3i2.1437 (10)O3—Mn1iii2.1437 (10)
Mn1—O12.1710 (10)O5—S11.4329 (13)
Mn1—O102.1897 (12)O6—S11.4382 (13)
Mn1—O8ii2.2138 (12)C15—O71.4303 (18)
Mn1—O72.2253 (11)C15—C161.508 (2)
C1—O21.2529 (17)C15—H15A0.9700
C1—O11.2576 (18)C15—H15B0.9700
C1—C21.5066 (18)C16—O81.4275 (19)
C2—C31.3943 (19)C16—H16A0.9700
C2—C41.3945 (19)C16—H16B0.9700
C3—C51.3889 (19)O7—H70.84 (2)
C3—H3A0.9300O8—Mn1iv2.2138 (11)
C4—C61.3799 (18)O8—H80.818 (16)
C4—H4A0.9300O9—H9C0.827 (15)
C5—C71.3871 (18)O9—H9B0.827 (15)
C5—H5A0.9300O10—H10C0.83 (3)
C6—C71.3961 (19)O10—H10B0.82 (3)
C6—S11.7671 (14)C17—C181.504 (3)
C7—C81.4762 (17)C17—H17A0.9600
C8—C91.3864 (18)C17—H17B0.9600
C8—C101.3941 (18)C17—H17C0.9600
C9—C111.3919 (18)C18—O111.245 (2)
C9—H9A0.9300C18—N11.318 (2)
C10—C121.3784 (18)C19—N11.461 (3)
C10—S11.7648 (13)C19—H19A0.9600
C11—C131.3932 (19)C19—H19B0.9600
C11—H11A0.9300C19—H19C0.9600
C12—C131.3950 (19)C20—N11.462 (3)
C12—H12A0.9300C20—H20A0.9600
C13—C141.5114 (17)C20—H20B0.9600
C14—O41.2488 (17)C20—H20C0.9600
O9—Mn1—O3i83.73 (4)C1—O1—Mn1132.45 (9)
O9—Mn1—O185.98 (4)C14—O3—Mn1iii131.98 (9)
O3i—Mn1—O1169.61 (4)O5—S1—O6117.10 (8)
O9—Mn1—O10172.07 (5)O5—S1—C10112.10 (7)
O3i—Mn1—O1088.43 (4)O6—S1—C10110.15 (7)
O1—Mn1—O10101.89 (4)O5—S1—C6110.96 (7)
O9—Mn1—O8ii92.82 (6)O6—S1—C6110.93 (7)
O3i—Mn1—O8ii86.40 (4)C10—S1—C693.06 (6)
O1—Mn1—O8ii92.72 (4)O7—C15—C16112.28 (13)
O10—Mn1—O8ii87.89 (5)O7—C15—H15A109.1
O9—Mn1—O788.29 (6)C16—C15—H15A109.1
O3i—Mn1—O793.65 (4)O7—C15—H15B109.1
O1—Mn1—O787.44 (4)C16—C15—H15B109.1
O10—Mn1—O791.00 (5)H15A—C15—H15B107.9
O8ii—Mn1—O7178.89 (5)O8—C16—C15110.22 (14)
O2—C1—O1125.37 (12)O8—C16—H16A109.6
O2—C1—C2117.52 (12)C15—C16—H16A109.6
O1—C1—C2117.09 (12)O8—C16—H16B109.6
C3—C2—C4119.54 (12)C15—C16—H16B109.6
C3—C2—C1120.53 (12)H16A—C16—H16B108.1
C4—C2—C1119.90 (12)C15—O7—Mn1125.99 (10)
C5—C3—C2121.77 (13)C15—O7—H7108.4 (15)
C5—C3—H3A119.1Mn1—O7—H7109.7 (16)
C2—C3—H3A119.1C16—O8—Mn1iv125.51 (10)
C6—C4—C2117.96 (12)C16—O8—H8107.4 (16)
C6—C4—H4A121.0Mn1iv—O8—H8123.9 (16)
C2—C4—H4A121.0Mn1—O9—H9C134.6 (16)
C7—C5—C3119.08 (13)Mn1—O9—H9B111.1 (16)
C7—C5—H5A120.5H9C—O9—H9B113 (2)
C3—C5—H5A120.5Mn1—O10—H10C125.2 (17)
C4—C6—C7123.13 (12)Mn1—O10—H10B102 (2)
C4—C6—S1126.50 (11)H10C—O10—H10B106 (2)
C7—C6—S1110.38 (10)C18—C17—H17A109.5
C5—C7—C6118.52 (12)C18—C17—H17B109.5
C5—C7—C8128.45 (12)H17A—C17—H17B109.5
C6—C7—C8113.03 (12)C18—C17—H17C109.5
C9—C8—C10118.68 (12)H17A—C17—H17C109.5
C9—C8—C7128.49 (12)H17B—C17—H17C109.5
C10—C8—C7112.83 (12)O11—C18—N1121.38 (16)
C8—C9—C11118.95 (12)O11—C18—C17118.61 (18)
C8—C9—H9A120.5N1—C18—C17120.01 (18)
C11—C9—H9A120.5N1—C19—H19A109.5
C12—C10—C8123.32 (12)N1—C19—H19B109.5
C12—C10—S1126.02 (11)H19A—C19—H19B109.5
C8—C10—S1110.64 (10)N1—C19—H19C109.5
C9—C11—C13121.50 (12)H19A—C19—H19C109.5
C9—C11—H11A119.2H19B—C19—H19C109.5
C13—C11—H11A119.2N1—C20—H20A109.5
C10—C12—C13117.59 (12)N1—C20—H20B109.5
C10—C12—H12A121.2H20A—C20—H20B109.5
C13—C12—H12A121.2N1—C20—H20C109.5
C11—C13—C12119.96 (12)H20A—C20—H20C109.5
C11—C13—C14121.20 (12)H20B—C20—H20C109.5
C12—C13—C14118.82 (12)C18—N1—C19120.01 (16)
O4—C14—O3125.06 (12)C18—N1—C20124.28 (18)
O4—C14—C13119.06 (12)C19—N1—C20115.66 (19)
O3—C14—C13115.87 (12)

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x+1, y, z; (iii) x+1, −y+3/2, z+1/2; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7···O4v0.84 (2)1.83 (2)2.6623 (16)175 (2)
O8—H8···O2vi0.82 (2)1.88 (2)2.6865 (16)169 (2)
O9—H9C···O110.83 (2)1.89 (2)2.7086 (17)171 (2)
O9—H9B···O20.83 (2)1.84 (2)2.6135 (16)156 (2)
O10—H10C···O11vi0.83 (3)1.96 (3)2.7877 (19)172 (2)
O10—H10B···O4i0.82 (3)1.98 (3)2.7663 (16)161 (3)

Symmetry codes: (v) −x+1, −y+2, −z+1; (vi) −x, y−1/2, −z+1/2; (i) x−1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2028).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kanaizuka, K., Iwakiri, S., Yamada, T. & Kitagawa, H. (2010). Chem. Lett.39, 28–29.
  • Neofotistou, E., Malliakas, C. D. & Trikalitis, P. N. (2009). Chem. Eur. J.15, 4523–4527. [PubMed]
  • Neofotistou, E., Malliakas, C. D. & Trikalitis, P. N. (2010). CrystEngComm, 12, 1034–1037.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yan, L., Yue, Q., Jia, Q.-X., Lemercier, G. & Gao, E.-Q. (2009). Cryst. Growth Des.9, 2984–2987.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography