PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3093.
Published online 2010 November 6. doi:  10.1107/S1600536810043308
PMCID: PMC3011536

2-Benzyl­sulfanyl-3-(2,2,2-trifluoro­ethoxy)pyridine

Abstract

The title compound, C14H12F3NOS, was synthesized by the reaction of 2-chloro-3-(2,2,2-trifluoro­eth­oxy)pyridine and phenyl­methane­thiol. The dihedral angle between the aromatic rings is 76.7 (2)°. In the crystal structure, weak aromatic π–π stacking between inversion-related pairs of pyridine rings [centroid-to-centroid separation = 3.776 (2) Å] may help to establish the packing.

Related literature

For background to the title compound as a precursor of weedkillers, see: Howard et al. (2001 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3093-scheme1.jpg

Experimental

Crystal data

  • C14H12F3NOS
  • M r = 299.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3093-efi1.jpg
  • a = 8.3770 (17) Å
  • b = 16.860 (3) Å
  • c = 10.144 (2) Å
  • β = 97.32 (3)°
  • V = 1421.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.927, T max = 0.951
  • 2758 measured reflections
  • 2575 independent reflections
  • 1716 reflections with I > 2σ(I)
  • R int = 0.036
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.136
  • S = 1.01
  • 2575 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043308/hb5702sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043308/hb5702Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

3-(2,2,2-trifluoroethoxy)-2-(benzylthio)pyridine, (I), is an important intermediate for a novel weed killer N-[[(4,6-Dimethoxy-2-Pyrimidinyl)Amino]Carbonyl]- 3-(2,2,2-Trifluoroethoxy)-2-Pyridinesulfonamide, which is of high herbicidal activity and friendly to the environment (Howard et al., 2001).

Here we report the crystal structure of (I). In the molecule of the title compound (Fig. 1), all bond lengths and angles (Allen et al., 1987) are within normal ranges. Rings A (C3–C6/N/C7) and B (C9–C14) are of course planar, while the dihedral angle between them is 76.7 (2)°.

Experimental

3-(2,2,2-trifluoroethoxy)-2-chloropyridine (10 mmol) and potassium carbonate (20 mmol) were dissolved in DMF (20 ml), and the mixture was stirred at reflux for 1 h. Then phenylmethanethiol (12 mmol) was added dropwise to the mixture above, refluxed for another 6 h. After cooling and filtering, crude compound (I) was obtained. Pure product suitable for X-ray diffraction was recrystallized from alcohol as colourless blocks of (I).

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 Ueq of the carrier atom.

Figures

Fig. 1.
The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C14H12F3NOSF(000) = 616
Mr = 299.31Dx = 1.399 Mg m3
Monoclinic, P21/nMelting point: 353 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.3770 (17) ÅCell parameters from 25 reflections
b = 16.860 (3) Åθ = 9–13°
c = 10.144 (2) ŵ = 0.26 mm1
β = 97.32 (3)°T = 293 K
V = 1421.0 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1716 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→10
Absorption correction: ψ scan (North et al., 1968)k = 0→20
Tmin = 0.927, Tmax = 0.951l = −12→12
2758 measured reflections3 standard reflections every 200 reflections
2575 independent reflections intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.136w = 1/[σ2(Fo2) + (0.027P)2 + 2.174P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2575 reflectionsΔρmax = 0.26 e Å3
182 parametersΔρmin = −0.28 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.18955 (13)0.37494 (6)0.26098 (10)0.0562 (3)
O1−0.0642 (3)0.33867 (16)0.0614 (3)0.0602 (8)
N10.2971 (4)0.45168 (18)0.0576 (3)0.0516 (8)
F1−0.2695 (4)0.21214 (19)0.1032 (4)0.1275 (14)
F2−0.4629 (4)0.2729 (2)−0.0088 (4)0.1367 (14)
F3−0.3439 (4)0.3240 (2)0.1674 (3)0.1163 (11)
C1−0.3180 (6)0.2823 (3)0.0625 (6)0.0831 (15)
C2−0.2097 (5)0.3222 (3)−0.0197 (4)0.0667 (12)
H2A−0.18970.2882−0.09300.080*
H2B−0.25820.3710−0.05600.080*
C30.0459 (4)0.3844 (2)0.0070 (4)0.0463 (9)
C40.0345 (5)0.4081 (3)−0.1235 (4)0.0607 (11)
H4A−0.05300.3936−0.18460.073*
C50.1580 (5)0.4542 (3)−0.1607 (4)0.0678 (12)
H5A0.15440.4714−0.24820.081*
C60.2844 (5)0.4742 (2)−0.0694 (4)0.0592 (11)
H6A0.36610.5051−0.09660.071*
C70.1804 (4)0.4077 (2)0.0952 (3)0.0427 (8)
C80.3643 (5)0.4284 (2)0.3398 (4)0.0550 (10)
H8A0.40750.40040.42010.066*
H8B0.44630.42850.28040.066*
C90.3294 (4)0.5127 (2)0.3752 (3)0.0432 (9)
C100.4057 (4)0.5758 (2)0.3243 (4)0.0499 (9)
H10A0.47800.56630.26370.060*
C110.3776 (5)0.6527 (2)0.3611 (4)0.0591 (11)
H11A0.43100.69430.32540.071*
C120.2721 (5)0.6681 (3)0.4494 (5)0.0704 (13)
H12A0.25280.72000.47390.084*
C130.1939 (5)0.6058 (3)0.5023 (5)0.0730 (13)
H13A0.12260.61570.56350.088*
C140.2214 (5)0.5291 (3)0.4647 (4)0.0593 (11)
H14A0.16680.48770.49970.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0704 (7)0.0507 (6)0.0449 (5)−0.0104 (5)−0.0025 (5)0.0047 (5)
O10.0537 (16)0.0634 (17)0.0608 (17)−0.0163 (14)−0.0029 (13)0.0096 (14)
N10.0501 (19)0.054 (2)0.0519 (19)−0.0038 (16)0.0119 (15)−0.0019 (16)
F10.113 (3)0.073 (2)0.206 (4)−0.0068 (19)0.059 (3)0.037 (2)
F20.063 (2)0.165 (4)0.182 (4)−0.039 (2)0.013 (2)−0.008 (3)
F30.119 (3)0.121 (3)0.120 (3)−0.018 (2)0.055 (2)−0.021 (2)
C10.063 (3)0.076 (4)0.114 (4)−0.014 (3)0.024 (3)−0.016 (3)
C20.054 (3)0.065 (3)0.080 (3)−0.016 (2)0.005 (2)−0.012 (2)
C30.045 (2)0.046 (2)0.047 (2)−0.0015 (17)0.0027 (17)−0.0018 (17)
C40.059 (3)0.076 (3)0.044 (2)−0.002 (2)−0.0020 (19)−0.001 (2)
C50.077 (3)0.084 (3)0.043 (2)−0.002 (3)0.012 (2)0.010 (2)
C60.060 (3)0.065 (3)0.056 (3)−0.004 (2)0.022 (2)0.002 (2)
C70.044 (2)0.0412 (19)0.0415 (19)0.0020 (16)0.0023 (16)−0.0037 (16)
C80.059 (2)0.057 (2)0.045 (2)0.004 (2)−0.0091 (18)−0.0034 (18)
C90.0396 (19)0.051 (2)0.0363 (19)0.0028 (17)−0.0076 (15)−0.0015 (16)
C100.044 (2)0.058 (2)0.045 (2)0.0031 (19)−0.0003 (17)0.0016 (18)
C110.054 (2)0.055 (2)0.065 (3)0.000 (2)−0.006 (2)0.008 (2)
C120.067 (3)0.057 (3)0.083 (3)0.011 (2)−0.005 (3)−0.015 (2)
C130.067 (3)0.083 (3)0.072 (3)0.007 (3)0.019 (2)−0.017 (3)
C140.059 (3)0.064 (3)0.056 (2)−0.004 (2)0.011 (2)0.001 (2)

Geometric parameters (Å, °)

S1—C71.762 (4)C5—H5A0.9300
S1—C81.816 (4)C6—H6A0.9300
O1—C31.371 (4)C8—C91.504 (5)
O1—C21.409 (4)C8—H8A0.9700
N1—C71.321 (4)C8—H8B0.9700
N1—C61.334 (5)C9—C101.375 (5)
F1—C11.300 (6)C9—C141.389 (5)
F2—C11.341 (6)C10—C111.378 (5)
F3—C11.316 (6)C10—H10A0.9300
C1—C21.472 (6)C11—C121.361 (6)
C2—H2A0.9700C11—H11A0.9300
C2—H2B0.9700C12—C131.382 (6)
C3—C41.374 (5)C12—H12A0.9300
C3—C71.403 (5)C13—C141.375 (6)
C4—C51.385 (6)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9300
C5—C61.358 (5)
C7—S1—C8101.50 (18)N1—C7—C3122.4 (3)
C3—O1—C2116.9 (3)N1—C7—S1120.5 (3)
C7—N1—C6117.9 (3)C3—C7—S1117.0 (3)
F1—C1—F3107.8 (5)C9—C8—S1113.8 (3)
F1—C1—F2106.8 (4)C9—C8—H8A108.8
F3—C1—F2105.6 (4)S1—C8—H8A108.8
F1—C1—C2113.9 (4)C9—C8—H8B108.8
F3—C1—C2113.0 (4)S1—C8—H8B108.8
F2—C1—C2109.2 (5)H8A—C8—H8B107.7
O1—C2—C1108.0 (4)C10—C9—C14117.7 (4)
O1—C2—H2A110.1C10—C9—C8121.8 (3)
C1—C2—H2A110.1C14—C9—C8120.5 (4)
O1—C2—H2B110.1C9—C10—C11121.5 (4)
C1—C2—H2B110.1C9—C10—H10A119.2
H2A—C2—H2B108.4C11—C10—H10A119.2
O1—C3—C4125.7 (3)C12—C11—C10120.3 (4)
O1—C3—C7115.3 (3)C12—C11—H11A119.8
C4—C3—C7119.0 (3)C10—C11—H11A119.8
C3—C4—C5117.6 (4)C11—C12—C13119.4 (4)
C3—C4—H4A121.2C11—C12—H12A120.3
C5—C4—H4A121.2C13—C12—H12A120.3
C6—C5—C4119.9 (4)C14—C13—C12120.2 (4)
C6—C5—H5A120.1C14—C13—H13A119.9
C4—C5—H5A120.1C12—C13—H13A119.9
N1—C6—C5123.2 (4)C13—C14—C9121.0 (4)
N1—C6—H6A118.4C13—C14—H14A119.5
C5—C6—H6A118.4C9—C14—H14A119.5
C3—O1—C2—C1−172.3 (4)O1—C3—C7—S10.3 (4)
F1—C1—C2—O1−66.8 (6)C4—C3—C7—S1−179.5 (3)
F3—C1—C2—O156.8 (6)C8—S1—C7—N17.5 (3)
F2—C1—C2—O1174.0 (4)C8—S1—C7—C3−173.0 (3)
C2—O1—C3—C4−7.7 (6)C7—S1—C8—C981.3 (3)
C2—O1—C3—C7172.6 (3)S1—C8—C9—C10−120.4 (3)
O1—C3—C4—C5−179.8 (4)S1—C8—C9—C1461.7 (4)
C7—C3—C4—C5−0.1 (6)C14—C9—C10—C110.5 (5)
C3—C4—C5—C60.1 (6)C8—C9—C10—C11−177.5 (3)
C7—N1—C6—C50.1 (6)C9—C10—C11—C12−0.1 (6)
C4—C5—C6—N1−0.1 (7)C10—C11—C12—C130.3 (6)
C6—N1—C7—C3−0.1 (5)C11—C12—C13—C14−0.8 (7)
C6—N1—C7—S1179.5 (3)C12—C13—C14—C91.1 (7)
O1—C3—C7—N1179.8 (3)C10—C9—C14—C13−0.9 (6)
C4—C3—C7—N10.1 (6)C8—C9—C14—C13177.1 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5702).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Howard, S., Hudetz, M. & Allard, J. L. (2001). The BCPC Conference – Weeds 2001, 2A-3, pp. 29–34.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography