PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3252.
Published online 2010 November 20. doi:  10.1107/S1600536810047422
PMCID: PMC3011535

3-(p-Anis­yl)sydnone

Abstract

In the title sydnone compound [systematic name: 3-(4-meth­oxy­phen­yl)-1,2,3-oxadiazol-3-ium-5-olate], C9H8N2O3, the essentially planar oxadiazole ring [maximum deviation = 0.005 (1) Å] is inclined at a dihedral angle of 30.32 (8)° with respect to the benzene ring. In the crystal, adjacent mol­ecules are inter­connected by inter­molecular C—H(...)O hydrogen bonds into sheets lying parallel to (100). Weak inter­molecular π–π inter­actions [centroid–centroid distance = 3.5812 (8) Å] further stabilize the crystal packing.

Related literature

For general background to and applications of the title sydnone compound, see: Hegde et al. (2008 [triangle]); Kalluraya & Rahiman (1997 [triangle]); Kalluraya et al. (2002 [triangle]); Rai et al. (2008 [triangle]). For closely related sydnone structures, see: Goh et al. (2010a [triangle],b [triangle],c [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3252-scheme1.jpg

Experimental

Crystal data

  • C9H8N2O3
  • M r = 192.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3252-efi1.jpg
  • a = 7.0505 (2) Å
  • b = 9.8220 (3) Å
  • c = 12.0934 (3) Å
  • V = 837.47 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.56 × 0.15 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.938, T max = 0.984
  • 7384 measured reflections
  • 1760 independent reflections
  • 1577 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.100
  • S = 1.06
  • 1760 reflections
  • 159 parameters
  • All H-atom parameters refined
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT (Bruker, 2009 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047422/rz2524sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047422/rz2524Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activity displayed by some of them (Rai et al., 2008). Sydnone derivatives were found to exhibit promising anti-microbial properties (Hegde et al., 2008). Sydnones are synthesized by the cyclodehydration of N-nitroso-N-substituted amino acids using acetic anhydride. The sydnones unsubstituted in the 4-position readily undergo typical electrophilic substitution reaction namely formylation (Kalluraya & Rahiman, 1997) and acetylation (Kalluraya et al., 2002).

In the title sydnone compound (Fig. 1), the 1,2,3-oxadiazole ring with atom sequence C7/C8/O1/N1/N2 is essentially planar, with a maximum deviation of 0.005 (1) Å at atom O1. The whole molecule is not planar, as indicated by the dihedral angle formed between the 1,2,3-oxadiazole and phenyl rings of 30.32 (8)°. Comparing with those previously reported structures with substitution at the 4-position of the sydnone moiety (Goh et al., 2010a,c), the exocyclic C8—O2 bond length [1.2174 (8) Å] is longer than the respective values observed [1.193 (3) and 1.2089 (9) Å]. All other geometric parameters agree well with those observed in closely related sydnone structures (Goh et al., 2010a,b,c).

In the crystal packing, intermolecular C1—H1A···O2 and C7—H7A···O3 hydrogen bonds (Table 1) link adjacent molecules into two-dimensional sheets lying parallel to the bc plane (Fig. 2). The crystal packing is further stabilized by weak intermolecular π–π interactions [Cg1···Cg2 = 3.5812 (8) Å; symmetry code: x-1/2, -y+3/2, -z+1] involving the 1,2,3-oxadiazole and phenyl rings.

Experimental

N-Nitroso-p-methoxyanilinoacetic acid (0.01 mol) was heated with acetic acid anhydride (0.5 mol) on a water bath for 2–3 h. The reaction mixture was kept aside at room temperature for overnight. It was then poured into ice-cold water. The obtained solid was dried and crystallized from benzene. Single crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement

All H atoms were located from difference Fourier map and allowed to refine freely with range of C—H = 0.95 (2) – 1.00 (2) Å. In the absence of significant anomalous dispersion, 1266 Friedel pairs were merged in the final refinement.

Figures

Fig. 1.
The molecular structure of the title sydnone compound, showing 50 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound, viewed along the a axis, showing a two-dimensional sheet parallel to the bc plane. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C9H8N2O3F(000) = 400
Mr = 192.17Dx = 1.524 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2851 reflections
a = 7.0505 (2) Åθ = 3.4–32.4°
b = 9.8220 (3) ŵ = 0.12 mm1
c = 12.0934 (3) ÅT = 100 K
V = 837.47 (4) Å3Needle, yellow
Z = 40.56 × 0.15 × 0.14 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1760 independent reflections
Radiation source: fine-focus sealed tube1577 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 32.7°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.938, Tmax = 0.984k = −14→14
7384 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100All H-atom parameters refined
S = 1.06w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0718P] where P = (Fo2 + 2Fc2)/3
1760 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.08268 (18)0.95246 (11)0.72517 (9)0.0204 (2)
O20.15734 (19)0.83477 (13)0.88211 (9)0.0252 (3)
O30.12932 (18)0.57288 (10)0.18145 (8)0.0199 (2)
N10.0695 (2)0.92968 (13)0.61277 (11)0.0199 (3)
N20.11891 (19)0.80122 (12)0.60181 (10)0.0152 (2)
C10.1632 (2)0.82919 (14)0.40336 (11)0.0157 (2)
C20.1665 (2)0.77417 (15)0.29712 (11)0.0158 (3)
C30.1284 (2)0.63583 (15)0.28173 (12)0.0160 (3)
C40.0868 (2)0.55302 (15)0.37253 (13)0.0179 (3)
C50.0829 (2)0.60641 (15)0.47811 (12)0.0165 (3)
C60.1211 (2)0.74504 (16)0.49222 (12)0.0145 (2)
C70.1622 (2)0.73661 (15)0.69641 (12)0.0173 (3)
C80.1394 (2)0.83234 (16)0.78201 (12)0.0186 (3)
C90.1403 (3)0.65840 (16)0.08473 (12)0.0205 (3)
H1A0.192 (3)0.928 (2)0.4147 (15)0.019 (5)*
H2A0.194 (3)0.831 (2)0.2340 (16)0.024 (5)*
H4A0.070 (3)0.457 (2)0.3623 (16)0.025 (5)*
H5A0.047 (3)0.5524 (19)0.5411 (15)0.015 (5)*
H7A0.203 (3)0.641 (2)0.6995 (17)0.026 (5)*
H9A0.124 (3)0.603 (2)0.0190 (16)0.020 (5)*
H9B0.040 (3)0.723 (2)0.0852 (16)0.023 (5)*
H9C0.262 (4)0.708 (3)0.0800 (19)0.041 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0255 (5)0.0180 (5)0.0179 (5)0.0014 (5)0.0003 (5)−0.0028 (4)
O20.0316 (6)0.0267 (5)0.0172 (5)−0.0033 (6)−0.0014 (5)−0.0011 (4)
O30.0290 (6)0.0155 (5)0.0151 (5)0.0016 (4)−0.0015 (4)−0.0013 (3)
N10.0258 (6)0.0151 (5)0.0188 (6)0.0035 (5)−0.0003 (5)−0.0016 (4)
N20.0152 (5)0.0141 (5)0.0163 (5)−0.0003 (4)−0.0002 (4)0.0006 (4)
C10.0168 (6)0.0136 (5)0.0167 (6)−0.0008 (5)−0.0016 (5)0.0004 (4)
C20.0168 (6)0.0136 (6)0.0169 (6)−0.0011 (5)−0.0010 (5)0.0016 (4)
C30.0154 (6)0.0158 (6)0.0169 (6)0.0007 (5)−0.0016 (5)−0.0013 (4)
C40.0213 (7)0.0130 (5)0.0195 (6)−0.0017 (5)0.0001 (5)0.0000 (5)
C50.0166 (6)0.0138 (5)0.0191 (6)−0.0013 (5)0.0004 (6)0.0010 (5)
C60.0138 (6)0.0142 (5)0.0154 (5)0.0001 (5)0.0004 (5)−0.0003 (4)
C70.0190 (6)0.0167 (6)0.0164 (6)−0.0002 (5)−0.0007 (5)0.0016 (5)
C80.0176 (6)0.0188 (6)0.0192 (6)−0.0014 (6)−0.0003 (6)0.0006 (5)
C90.0256 (7)0.0200 (6)0.0159 (6)0.0019 (6)−0.0014 (6)−0.0002 (5)

Geometric parameters (Å, °)

O1—N11.3807 (16)C2—H2A0.97 (2)
O1—C81.4227 (19)C3—C41.398 (2)
O2—C81.2174 (18)C4—C51.381 (2)
O3—C31.3613 (17)C4—H4A0.95 (2)
O3—C91.4421 (18)C5—C61.398 (2)
N1—N21.3158 (16)C5—H5A0.961 (19)
N2—C71.3434 (17)C7—C81.408 (2)
N2—C61.4356 (18)C7—H7A0.98 (2)
C1—C61.388 (2)C9—H9A0.97 (2)
C1—C21.3940 (19)C9—H9B0.95 (2)
C1—H1A1.00 (2)C9—H9C0.99 (3)
C2—C31.3976 (19)
N1—O1—C8111.11 (12)C4—C5—C6118.61 (13)
C3—O3—C9117.27 (11)C4—C5—H5A121.9 (11)
N2—N1—O1103.69 (12)C6—C5—H5A119.4 (11)
N1—N2—C7115.30 (12)C1—C6—C5121.77 (14)
N1—N2—C6117.68 (12)C1—C6—N2119.22 (13)
C7—N2—C6127.02 (12)C5—C6—N2119.00 (13)
C6—C1—C2119.11 (13)N2—C7—C8106.54 (13)
C6—C1—H1A121.0 (11)N2—C7—H7A123.4 (12)
C2—C1—H1A119.9 (11)C8—C7—H7A130.1 (12)
C1—C2—C3119.76 (13)O2—C8—C7137.09 (16)
C1—C2—H2A120.5 (13)O2—C8—O1119.56 (14)
C3—C2—H2A119.8 (13)C7—C8—O1103.34 (12)
O3—C3—C4115.89 (13)O3—C9—H9A109.4 (12)
O3—C3—C2124.01 (13)O3—C9—H9B110.2 (12)
C4—C3—C2120.10 (13)H9A—C9—H9B107.0 (17)
C5—C4—C3120.65 (13)O3—C9—H9C112.3 (15)
C5—C4—H4A119.4 (12)H9A—C9—H9C109.3 (18)
C3—C4—H4A119.8 (12)H9B—C9—H9C108.5 (19)
C8—O1—N1—N2−0.84 (16)C4—C5—C6—C1−0.2 (2)
O1—N1—N2—C70.46 (17)C4—C5—C6—N2−179.47 (14)
O1—N1—N2—C6−179.58 (12)N1—N2—C6—C130.90 (19)
C6—C1—C2—C3−0.2 (2)C7—N2—C6—C1−149.14 (15)
C9—O3—C3—C4169.99 (14)N1—N2—C6—C5−149.86 (15)
C9—O3—C3—C2−10.3 (2)C7—N2—C6—C530.1 (2)
C1—C2—C3—O3−179.64 (13)N1—N2—C7—C80.09 (18)
C1—C2—C3—C40.0 (2)C6—N2—C7—C8−179.87 (13)
O3—C3—C4—C5179.72 (14)N2—C7—C8—O2−179.70 (19)
C2—C3—C4—C50.0 (2)N2—C7—C8—O1−0.58 (16)
C3—C4—C5—C60.1 (2)N1—O1—C8—O2−179.79 (14)
C2—C1—C6—C50.3 (2)N1—O1—C8—C70.89 (17)
C2—C1—C6—N2179.53 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i1.00 (2)2.59 (2)3.5441 (19)159.1 (15)
C7—H7A···O3ii0.98 (2)2.42 (2)3.3814 (18)165.7 (17)

Symmetry codes: (i) −x+1/2, −y+2, z−1/2; (ii) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2524).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1251–o1252. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1303. [PMC free article] [PubMed]
  • Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem.43, 2831–2834. [PubMed]
  • Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem.71, 1049–1052.
  • Kalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography