PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3182.
Published online 2010 November 13. doi:  10.1107/S160053681004599X
PMCID: PMC3011532

1-Benzoyl-3-[4-(3-benzoyl­thio­ureido)phen­yl]thio­urea

Abstract

The mol­ecule of the title compound, C22H18N4O2S2, lies across a crystallographic inversion centre. The mol­ecule adopts a syn–anti configuration with respect to the positions of the carbonyl groups and terminal phenyl rings relative to the thione S atom across the C—N bond. There are two intra­molecular N—H(...)O and C—H(...)S hydrogen bonds within each molecule, resulting in the formation of four six-membered S(6) rings. The central and terminal rings make a dihedral angle of 13.55 (15)°. In the crystal, mol­ecules are linked by inter­molecular C—H(...)S hydrogen bonds, forming R 2 2(14) rings and resulting in zigzag chains.

Related literature

For related compounds and structural parameters, see: Hung et al. (2010 [triangle]), Thiam et al. (2008 [triangle]); Arslan et al. (2004 [triangle]); Yamin et al., (2003 [triangle]). For bond-length data, see: Allen et al. (197) [triangle]. For hydrogen-bond motifs, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3182-scheme1.jpg

Experimental

Crystal data

  • C22H18N4O2S2
  • M r = 434.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3182-efi1.jpg
  • a = 11.513 (4) Å
  • b = 4.5279 (16) Å
  • c = 20.209 (7) Å
  • β = 101.146 (7)°
  • V = 1033.6 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 298 K
  • 0.50 × 0.15 × 0.13 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.950, T max = 0.964
  • 6173 measured reflections
  • 2142 independent reflections
  • 1529 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.171
  • S = 1.14
  • 2142 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004599X/dn2618sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004599X/dn2618Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for providing facilities and the Ministry of Higher Education, Malaysia for research funding (grant Nos. UKM-ST-01- FRGS-0016–2006, UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2009).

supplementary crystallographic information

Comment

The title compound (Fig. 1) is a benzoyl thiourea derivatives and analogous to 1,2-bis(N'-benzoylthioureido)benzene, (Thiam et al., 2008), except that the other thiourea moiety is located in para position of the centre benzene ring. It is also an isomer of 1,1'-Diphenyl-3,3'-(p-phenylenedicarbonyl)dithiourea which was reported perviously (Hung et al., 2010). The bond lengths and angles are in normal ranges (Allen et al., 1987). The C=O bond length of 1.227 (3)Å is longer than the average C=O bond length (1.200 Å) and comparable to that observed in N-benzoyl-N'-phenylthiourea (Yamin et al., 2003). The C—N bond lengths are in the range of 1.330 (3) Å-1.415 (3)Å which are shorter than the normal single C—N bond length (1.469 Å) indicating double bond character (Arslan et al. 2004) owing to the resonance effect at the carbonyl-thiourea moiety. The thiourea fragment (S1/O1/N1/C6/C7/C8) is planar with a maximum deviation from its mean plane of 0.044 (3)Å for C8 atom. The central and terminal phenyl rings are essentially planar. The two rings make dihedral angles of 2.19 (13)° and 12.24 (15)°, respectively, with the thiourea fragment and the dihedral angle between those two rings is 13.55 (15)°.

As in most of the benzoyl thiourea derivatives, N–H···O intramolecular hydrogen bonding lead to the formation of two six membered S(6) rings [Etter et al., 1990; Bernstein et al., 1995) namely, C7/N1/C8/N2/H2/O1 and C7i/N1i/C8i/N2i/H2Ai/O1i (Fig. 1, Table 1). There are also weak C-H···S intramolecular hydrogen bonds involving resulting in another two S(6) rings (C8/N2/C9/C11/H11/S1 and C8i/N2i/C9i/C11i/H11i/S1i). In the crystal structure, molecules are linked by intermolecular C–H···S hydrogen bonds (Table 1) building R22(14) rings (Etter et al., 1990; Bernstein et al., 1995) (Fig. 2). Owing to the fact that the molecule is organised around an inversion center, these rings extend on each side of the molecule to form azigzag chain.

Experimental

The title compound was synthesized according to previously reported method with some modification (Thiam et al. 2008). Benzoyl chloride (10 mmol) was added to ammonium thiocyanate solution (10 mmol) and the mixture was left to react to completion. A yellowish product was filtered and added to a 1,4-diaminobenzene (5 mmol) in acetone and left at a refluxing temperature for 5 h. Yellowish precipitate was formed and a slow evaporation of the DMF solution of the product gave a crystal suitable for X-ray diffraction (Yield:75%).

Refinement

All H atoms attached to C and N were calculated and treated as riding on their parent atoms with C-H= 0.93Å and N-H= 0.86Å with Uiso=1.2Ueq (C, N).

Figures

Fig. 1.
The molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.[Symmetry code: ...
Fig. 2.
Partial packing view down the b axis showing the formation of R22(14) graph set motifs. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (ii) -x, -y+1, -z+2]

Crystal data

C22H18N4O2S2F(000) = 452
Mr = 434.52Dx = 1.396 Mg m3
Monoclinic, P21/nMelting point: 511 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.513 (4) ÅCell parameters from 1244 reflections
b = 4.5279 (16) Åθ = 1.9–26.5°
c = 20.209 (7) ŵ = 0.28 mm1
β = 101.146 (7)°T = 298 K
V = 1033.6 (6) Å3Needle, yellow
Z = 20.50 × 0.15 × 0.13 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2142 independent reflections
Radiation source: fine-focus sealed tube1529 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scanθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→14
Tmin = 0.950, Tmax = 0.964k = −5→5
6173 measured reflectionsl = −25→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0839P)2 + 0.1163P] where P = (Fo2 + 2Fc2)/3
2142 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.16597 (7)0.6404 (2)1.04023 (4)0.0663 (4)
O10.25185 (19)0.2798 (6)0.84661 (10)0.0637 (7)
N10.14062 (19)0.3425 (5)0.92651 (10)0.0425 (6)
H1A0.07670.28520.93880.051*
N20.30760 (19)0.6294 (5)0.94925 (11)0.0432 (6)
H2A0.31490.55460.91120.052*
C10.0805 (3)−0.0367 (8)0.76267 (15)0.0643 (10)
H10.14540.03440.74640.077*
C2−0.0026 (4)−0.2077 (10)0.72171 (17)0.0836 (13)
H20.0062−0.25060.67790.100*
C3−0.0988 (3)−0.3159 (8)0.74552 (18)0.0709 (11)
H3−0.1557−0.42860.71760.085*
C4−0.1102 (3)−0.2566 (8)0.81058 (16)0.0563 (8)
H4−0.1742−0.33230.82700.068*
C5−0.0271 (3)−0.0849 (7)0.85172 (14)0.0465 (7)
H5−0.0352−0.04670.89580.056*
C60.0684 (2)0.0310 (6)0.82792 (13)0.0422 (7)
C70.1604 (2)0.2252 (7)0.86697 (13)0.0425 (7)
C80.2103 (2)0.5429 (6)0.97010 (13)0.0407 (7)
C90.4014 (2)0.8203 (6)0.97749 (12)0.0386 (7)
C100.4932 (2)0.8417 (7)0.94239 (13)0.0478 (8)
H100.48870.73330.90290.057*
C110.4091 (2)0.9828 (7)1.03623 (13)0.0472 (8)
H110.34900.97341.06100.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0557 (5)0.0955 (8)0.0554 (5)−0.0286 (5)0.0299 (4)−0.0292 (5)
O10.0538 (13)0.0916 (19)0.0525 (12)−0.0245 (12)0.0274 (10)−0.0201 (12)
N10.0372 (12)0.0525 (16)0.0409 (12)−0.0114 (11)0.0155 (10)−0.0048 (11)
N20.0427 (13)0.0514 (15)0.0378 (12)−0.0114 (11)0.0136 (10)−0.0052 (10)
C10.068 (2)0.081 (3)0.0476 (18)−0.0252 (19)0.0218 (15)−0.0127 (17)
C20.104 (3)0.103 (3)0.0458 (19)−0.041 (3)0.0214 (19)−0.025 (2)
C30.071 (2)0.074 (3)0.064 (2)−0.024 (2)0.0035 (18)−0.0142 (19)
C40.0462 (18)0.060 (2)0.064 (2)−0.0110 (15)0.0133 (15)−0.0022 (17)
C50.0475 (16)0.0525 (19)0.0415 (14)−0.0021 (14)0.0131 (12)−0.0058 (13)
C60.0457 (16)0.0428 (17)0.0390 (14)−0.0002 (13)0.0103 (12)−0.0013 (13)
C70.0452 (16)0.0465 (18)0.0373 (15)−0.0027 (13)0.0120 (12)0.0019 (12)
C80.0399 (15)0.0432 (17)0.0401 (14)−0.0026 (13)0.0103 (11)0.0044 (12)
C90.0399 (15)0.0430 (17)0.0333 (13)−0.0032 (12)0.0078 (11)0.0037 (12)
C100.0487 (17)0.058 (2)0.0397 (15)−0.0101 (14)0.0149 (13)−0.0109 (14)
C110.0425 (16)0.060 (2)0.0433 (15)−0.0087 (14)0.0188 (12)−0.0040 (14)

Geometric parameters (Å, °)

S1—C81.656 (3)C3—C41.373 (5)
O1—C71.227 (3)C3—H30.9300
N1—C71.374 (3)C4—C51.380 (4)
N1—C81.403 (3)C4—H40.9300
N1—H1A0.8600C5—C61.386 (4)
N2—C81.330 (3)C5—H50.9300
N2—C91.415 (3)C6—C71.481 (4)
N2—H2A0.8600C9—C111.385 (4)
C1—C21.376 (5)C9—C101.385 (4)
C1—C61.386 (4)C10—C11i1.376 (4)
C1—H10.9300C10—H100.9300
C2—C31.381 (5)C11—C10i1.376 (4)
C2—H20.9300C11—H110.9300
C7—N1—C8128.9 (2)C6—C5—H5119.7
C7—N1—H1A115.5C5—C6—C1118.6 (3)
C8—N1—H1A115.5C5—C6—C7125.0 (2)
C8—N2—C9132.6 (2)C1—C6—C7116.5 (3)
C8—N2—H2A113.7O1—C7—N1120.9 (3)
C9—N2—H2A113.7O1—C7—C6120.8 (2)
C2—C1—C6120.8 (3)N1—C7—C6118.3 (2)
C2—C1—H1119.6N2—C8—N1113.9 (2)
C6—C1—H1119.6N2—C8—S1127.6 (2)
C1—C2—C3120.1 (3)N1—C8—S1118.45 (19)
C1—C2—H2120.0C11—C9—C10118.2 (2)
C3—C2—H2120.0C11—C9—N2126.0 (2)
C4—C3—C2119.7 (3)C10—C9—N2115.8 (2)
C4—C3—H3120.1C11i—C10—C9122.5 (3)
C2—C3—H3120.1C11i—C10—H10118.8
C3—C4—C5120.2 (3)C9—C10—H10118.8
C3—C4—H4119.9C10i—C11—C9119.3 (2)
C5—C4—H4119.9C10i—C11—H11120.4
C4—C5—C6120.6 (3)C9—C11—H11120.4
C4—C5—H5119.7
C6—C1—C2—C3−0.4 (7)C5—C6—C7—N1−11.9 (4)
C1—C2—C3—C4−1.2 (7)C1—C6—C7—N1168.0 (3)
C2—C3—C4—C51.2 (6)C9—N2—C8—N1−178.7 (3)
C3—C4—C5—C60.4 (5)C9—N2—C8—S10.3 (5)
C4—C5—C6—C1−1.9 (5)C7—N1—C8—N20.7 (4)
C4—C5—C6—C7177.9 (3)C7—N1—C8—S1−178.4 (2)
C2—C1—C6—C52.0 (5)C8—N2—C9—C11−3.8 (5)
C2—C1—C6—C7−177.9 (3)C8—N2—C9—C10175.8 (3)
C8—N1—C7—O13.9 (5)C11—C9—C10—C11i0.0 (5)
C8—N1—C7—C6−176.1 (3)N2—C9—C10—C11i−179.6 (3)
C5—C6—C7—O1168.1 (3)C10—C9—C11—C10i0.0 (5)
C1—C6—C7—O1−12.0 (5)N2—C9—C11—C10i179.6 (3)

Symmetry codes: (i) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.852.590 (3)144
C11—H11···S10.932.563.215 (3)128
C5—H5···S1ii0.932.843.567 (3)136

Symmetry codes: (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2618).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arslan, H., Flörke, U. & Külcü, N. (2004). Acta Chim. Slov.51, 787–792.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776. [PMC free article] [PubMed]
  • Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography