PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3214.
Published online 2010 November 17. doi:  10.1107/S1600536810046805
PMCID: PMC3011526

2-Chloro-1-(4,5,6,7-tetrahydro­thieno[3,2-c]pyridin-5-yl)ethanone

Abstract

In the title compound, C9H10ClNOS, the dihedral angle between the planar thio­phene ring and 2-chloro­ethane moiety (r.m.s deviations of 0.003 and 0.015 Å, respectively) is 45.79 (6)°. The tetra­hydro­pyridine ring adopts a half-chair conformation. The crystal packing reveals inter­molecular C—H(...)O inter­actions.

Related literature

The title compound is an inter­mediate in the synthesis of thienopyridine compounds, which are characterized by anti­platelet activity. For background to thienopyridine derivatives, see: Kam & Nethery (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]). For the preparation of 4,5,6,7-tetra­hydro-thieno[3,2-c]pyridine hydro­chloride, see: Lodewijk & Khatri (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3214-scheme1.jpg

Experimental

Crystal data

  • C9H10ClNOS
  • M r = 215.69
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3214-efi1.jpg
  • a = 10.5753 (4) Å
  • b = 10.8291 (4) Å
  • c = 8.0679 (3) Å
  • V = 923.94 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 113 K
  • 0.26 × 0.24 × 0.18 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.861, T max = 0.901
  • 8326 measured reflections
  • 1927 independent reflections
  • 1850 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.057
  • S = 1.09
  • 1927 reflections
  • 119 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 755 Friedel pairs
  • Flack parameter: 0.02 (5)

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046805/kp2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046805/kp2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mr Hai-Bin Song, Nankai University, for helpful discussions.

supplementary crystallographic information

Comment

The thienopyridines ticlopidine and clopidogrel are inhibitors of platelet function in vivo. They are effective in preventing atherothrombotic events in cardiovascular, cerebrovascular, and peripheral vascular disease (Kam & Nethery, 2003). The crystal structure of the title compound, 2-chloro-1-(6,7-dihydrothieno [3,2-c]pyridin-5(4H)-yl)ethanone (I), an intermediate in the synthesis of some of the thienopyridines, is reported here.

In the title compound (Fig. 1) all bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The thiophene ring is planar (r.m.s. deviation 0.003 Å for C8/C9/N1/O1/Cl1). The half chair conformation of the tetrahydropyridine ring is defined by the puckering parameter of [var phi]2=217.5 (2) ° and QT=0.5052 (15) Å (Cremer & Pople, 1975). The packing is realised by intermolecular C—H···O (Table 1) interactions.

Experimental

The synthesis of 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine hydrochloride was reported by Lodewijk & Khatri (1989). In our experiment, 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine was released from 4,5,6,7-tetrahydrothieno[3,2,c]pyridine hydrochloride (5.0 g, 29 mmol) by reaction with NaHCO3 (7.3 g, 87 mmol) in the presence of CH2Cl2 (50 mL) and water (15 mL), stirred for 4 h at 273 K. The organic phase was washed with water and evaporated off under reduced pressure to get yellow oil (3.9 g, 28 mmol). The oil was dissolved in CH2Cl2 (50 mL) and 2-chloroacetyl chloride (3.5 g, 31 mmol) was added dropwise into the mixture. The mixture was stirred at 268 K for 5 h, the organic phase was washed with water and evaporated off under reduced pressure to get yellow oil (5.7 g) as a crude product. The product was dissolved in a mixture of petroleum ether (40 mL) and acetone (10 mL) at 273 K, and white crystals were grown slowly.

Refinement

All the H atoms was located on their parent atoms with C—H=0.95Å (aromatic CH) and 0.99Å (CH2), Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C9H10ClNOSF(000) = 448
Mr = 215.69Dx = 1.551 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2c -2acCell parameters from 3069 reflections
a = 10.5753 (4) Åθ = 1.9–27.9°
b = 10.8291 (4) ŵ = 0.59 mm1
c = 8.0679 (3) ÅT = 113 K
V = 923.94 (6) Å3Block, colourless
Z = 40.26 × 0.24 × 0.18 mm

Data collection

Rigaku Saturn CCD area detector diffractometer1927 independent reflections
Radiation source: rotating anode1850 reflections with I > 2σ(I)
confocalRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and [var phi] scansh = −13→13
Absorption correction: multi-scan CrystalCleark = −14→14
Tmin = 0.861, Tmax = 0.901l = −10→8
8326 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020w = 1/[σ2(Fo2) + (0.0393P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.23 e Å3
1927 reflectionsΔρmin = −0.20 e Å3
119 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.035 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 743 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.26658 (4)−0.10564 (3)0.20010 (5)0.02247 (11)
S10.01605 (3)0.55872 (3)0.34620 (6)0.01748 (10)
O10.35771 (11)0.10076 (10)0.39637 (14)0.0196 (3)
N10.17029 (11)0.18603 (10)0.47077 (16)0.0144 (3)
C10.14078 (15)0.62110 (13)0.4538 (2)0.0186 (3)
H10.15630.70720.46330.022*
C20.21493 (14)0.53226 (13)0.52392 (19)0.0171 (3)
H20.28770.54910.58910.021*
C30.17003 (14)0.41084 (12)0.48778 (19)0.0141 (3)
C40.06333 (14)0.40982 (12)0.39463 (19)0.0136 (3)
C5−0.01059 (13)0.29663 (11)0.3500 (3)0.0162 (3)
H5A0.00580.27340.23330.019*
H5B−0.10230.31230.36310.019*
C60.03142 (13)0.19294 (12)0.4661 (2)0.0160 (3)
H6A−0.00150.20860.57900.019*
H6B−0.00350.11330.42690.019*
C70.22995 (14)0.29303 (12)0.5499 (2)0.0161 (3)
H7A0.32150.29360.52460.019*
H7B0.21980.28730.67170.019*
C80.24161 (16)0.10101 (12)0.3917 (2)0.0156 (3)
C90.16586 (13)0.00648 (13)0.29136 (19)0.0171 (3)
H9A0.11800.04960.20320.021*
H9B0.1043−0.03520.36490.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0279 (2)0.01909 (17)0.02041 (19)0.00927 (14)−0.00056 (18)−0.00199 (16)
S10.01631 (18)0.01532 (16)0.02081 (19)0.00237 (13)−0.00046 (18)0.00111 (16)
O10.0134 (6)0.0224 (5)0.0229 (6)0.0025 (4)0.0001 (4)0.0021 (4)
N10.0134 (6)0.0131 (5)0.0167 (6)−0.0018 (4)0.0003 (5)0.0000 (5)
C10.0198 (8)0.0159 (6)0.0201 (8)−0.0039 (5)0.0037 (6)−0.0013 (6)
C20.0161 (8)0.0189 (7)0.0163 (8)−0.0033 (5)0.0011 (6)−0.0025 (6)
C30.0130 (7)0.0162 (6)0.0131 (7)−0.0011 (5)0.0024 (6)0.0005 (5)
C40.0114 (7)0.0138 (6)0.0157 (8)0.0014 (5)0.0033 (5)−0.0002 (5)
C50.0116 (6)0.0170 (6)0.0198 (7)−0.0001 (5)−0.0018 (6)−0.0029 (7)
C60.0127 (7)0.0140 (6)0.0214 (8)−0.0023 (5)0.0043 (6)−0.0021 (6)
C70.0155 (7)0.0150 (6)0.0179 (8)−0.0019 (5)−0.0036 (6)0.0002 (6)
C80.0193 (8)0.0146 (6)0.0128 (7)0.0020 (5)0.0005 (6)0.0049 (5)
C90.0173 (7)0.0165 (6)0.0175 (7)0.0043 (5)0.0001 (6)−0.0016 (5)

Geometric parameters (Å, °)

Cl1—C91.7751 (14)C3—C71.5103 (18)
S1—C11.7173 (17)C4—C51.4977 (18)
S1—C41.7329 (14)C5—C61.528 (2)
O1—C81.2283 (19)C5—H5A0.9900
N1—C81.3503 (19)C5—H5B0.9900
N1—C71.4658 (17)C6—H6A0.9900
N1—C61.4710 (18)C6—H6B0.9900
C1—C21.364 (2)C7—H7A0.9900
C1—H10.9500C7—H7B0.9900
C2—C31.4280 (19)C8—C91.532 (2)
C2—H20.9500C9—H9A0.9900
C3—C41.356 (2)C9—H9B0.9900
C1—S1—C491.75 (7)N1—C6—C5110.08 (11)
C8—N1—C7120.29 (12)N1—C6—H6A109.6
C8—N1—C6125.47 (13)C5—C6—H6A109.6
C7—N1—C6113.62 (11)N1—C6—H6B109.6
C2—C1—S1111.95 (11)C5—C6—H6B109.6
C2—C1—H1124.0H6A—C6—H6B108.2
S1—C1—H1124.0N1—C7—C3110.02 (12)
C1—C2—C3111.93 (13)N1—C7—H7A109.7
C1—C2—H2124.0C3—C7—H7A109.7
C3—C2—H2124.0N1—C7—H7B109.7
C4—C3—C2113.42 (13)C3—C7—H7B109.7
C4—C3—C7121.76 (12)H7A—C7—H7B108.2
C2—C3—C7124.78 (13)O1—C8—N1123.06 (14)
C3—C4—C5125.05 (13)O1—C8—C9122.51 (13)
C3—C4—S1110.95 (10)N1—C8—C9114.41 (13)
C5—C4—S1123.83 (11)C8—C9—Cl1111.26 (10)
C4—C5—C6107.60 (13)C8—C9—H9A109.4
C4—C5—H5A110.2Cl1—C9—H9A109.4
C6—C5—H5A110.2C8—C9—H9B109.4
C4—C5—H5B110.2Cl1—C9—H9B109.4
C6—C5—H5B110.2H9A—C9—H9B108.0
H5A—C5—H5B108.5
C4—S1—C1—C2−0.19 (13)C7—N1—C6—C567.73 (16)
S1—C1—C2—C30.67 (18)C4—C5—C6—N1−48.83 (16)
C1—C2—C3—C4−1.0 (2)C8—N1—C7—C3126.36 (14)
C1—C2—C3—C7−178.84 (14)C6—N1—C7—C3−45.10 (16)
C2—C3—C4—C5−174.63 (15)C4—C3—C7—N110.1 (2)
C7—C3—C4—C53.3 (2)C2—C3—C7—N1−172.22 (13)
C2—C3—C4—S10.80 (17)C7—N1—C8—O17.9 (2)
C7—C3—C4—S1178.75 (12)C6—N1—C8—O1178.27 (14)
C1—S1—C4—C3−0.36 (13)C7—N1—C8—C9−170.49 (12)
C1—S1—C4—C5175.15 (15)C6—N1—C8—C9−0.1 (2)
C3—C4—C5—C616.2 (2)O1—C8—C9—Cl14.40 (19)
S1—C4—C5—C6−158.65 (11)N1—C8—C9—Cl1−177.22 (11)
C8—N1—C6—C5−103.21 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.356 (2)138

Symmetry codes: (i) −x+1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2289).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kam, P. C. A. & Nethery, C. M. (2003). Anaesthesia 58, 28–35. [PubMed]
  • Lodewijk, E. & Khatri, H. N. (1989). European Patent EP 0 342 118.
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography