PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3353.
Published online 2010 November 30. doi:  10.1107/S160053681004910X
PMCID: PMC3011525

2-[4,5-Bis(butyl­sulfan­yl)-1,3-dithiol-2-yl­idene]-5-methyl-5H-1,3-dithiolo[4,5-c]pyrrole-4-carbaldehyde

Abstract

In the title compound, C18H23NOS6, the dithiol­opyrrole ring is almost planar [r.m.s. deviation = 0.044 (3) Å] and makes a dihedral angle of 25.11 (7)° with the dithiole ring. In the crystal, pairs of neighboring mol­ecules are connected by weak inter­molecular C—H(...)O inter­actions. These dimers are further linked into a chain along [110] by C—H(...)O inter­actions.

Related literature

For background to tetra­thia­fulvalenes, see: Jeppesen et al. (1999 [triangle]); Hansel et al. (2004 [triangle]). For the synthesis, see: An et al. (2009 [triangle]). For a related structure, see: Leng et al. (2009 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o3353-scheme1.jpg

Experimental

Crystal data

  • C18H23NOS6
  • M r = 461.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3353-efi1.jpg
  • a = 7.4227 (15) Å
  • b = 8.8356 (18) Å
  • c = 17.811 (4) Å
  • α = 93.44 (3)°
  • β = 99.37 (3)°
  • γ = 105.31 (3)°
  • V = 1105.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 291 K
  • 0.12 × 0.11 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.929, T max = 0.940
  • 10707 measured reflections
  • 4956 independent reflections
  • 3298 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.176
  • S = 1.06
  • 4956 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004910X/ng5074sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004910X/ng5074Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

The tetrathiafulvalenes (TTFs) have become an interesting theme of organic synthesis (Jeppesen et al., 1999). This is due to the high electrical conductivity and super conductor properties of these highly sophisticated compounds. Becher has recently synthesized a series novel donor-π-acceptor dyads based on the monopyrrolo-TTF (MPTTF), which exhibit good third-order non-linear optical properties (Hansel et al. 2004). In this paper, we report the crystal structure of the title compound, which is a key precursor of the dyads.

The title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Leng et al., 2009). In the title compound, the dithiolopyrrole ring and attached C16, C18 and O1 atoms are nearlly coplanar [mean deviation from the mean plane = 0.044 (3) Å. The dihedral angle between the dithiolopyrrole ring and dithiole ring is 25.11 (7) °. In the crystal, weak C—H···O hydrogen bonds (table 1) link the molecules into dimer firstly and the dimers are further linked to form one-dimensional chain along [a+b] direction.

Experimental

The title compound was prepared according to literature (An et al., 2009). Crystals suitable for single-crystal X-ray diffraction were grown by recrystallization from mixture of dichloromethane and petroleum (60–90 °C).

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93–0.97 A and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.
The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C18H23NOS6Z = 2
Mr = 461.73F(000) = 484
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4227 (15) ÅCell parameters from 7048 reflections
b = 8.8356 (18) Åθ = 3.2–27.4°
c = 17.811 (4) ŵ = 0.63 mm1
α = 93.44 (3)°T = 291 K
β = 99.37 (3)°Block, yellow
γ = 105.31 (3)°0.12 × 0.11 × 0.10 mm
V = 1105.1 (4) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4956 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→9
Tmin = 0.929, Tmax = 0.940k = −11→11
10707 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.103P)2] where P = (Fo2 + 2Fc2)/3
4956 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.3588 (7)0.8577 (6)0.3605 (3)0.0992 (16)
H1A1.44030.85690.32390.149*
H1B1.43090.86650.41130.149*
H1C1.30670.94590.35540.149*
C21.2000 (6)0.7069 (5)0.3463 (2)0.0746 (11)
H2A1.25290.62060.35980.090*
H2B1.11200.71390.38020.090*
C31.0910 (6)0.6676 (5)0.2657 (2)0.0685 (10)
H3A1.00390.56280.26120.082*
H3B1.17980.66420.23170.082*
C40.9789 (5)0.7804 (5)0.2387 (2)0.0612 (9)
H4A0.92270.74940.18510.073*
H4B1.06560.88530.24290.073*
C51.0794 (8)0.1668 (7)0.4134 (3)0.1074 (17)
H5A1.06220.14600.35880.161*
H5B1.11500.08150.43700.161*
H5C1.17780.26340.43050.161*
C60.8994 (9)0.1813 (7)0.4347 (3)0.1053 (17)
H6A0.79740.08860.41200.126*
H6B0.91110.18490.48990.126*
C70.8498 (7)0.3235 (6)0.4094 (3)0.0837 (13)
H7A0.83720.31940.35420.100*
H7B0.95240.41610.43170.100*
C80.6652 (7)0.3397 (5)0.4319 (2)0.0735 (11)
H8A0.67340.33500.48660.088*
H8B0.56040.25210.40590.088*
C90.6295 (5)0.6022 (4)0.26157 (16)0.0458 (7)
C100.5642 (5)0.4948 (4)0.30804 (17)0.0483 (7)
C110.4100 (4)0.3654 (3)0.17027 (16)0.0445 (7)
C120.3512 (4)0.2543 (3)0.10934 (16)0.0438 (7)
C130.2413 (4)−0.0068 (3)0.02430 (17)0.0440 (7)
C140.3053 (4)0.1071 (3)−0.02319 (16)0.0439 (7)
C150.2900 (5)0.0300 (4)−0.09493 (18)0.0525 (8)
H150.32070.0776−0.13810.063*
C160.1719 (6)−0.2460 (5)−0.1579 (2)0.0688 (10)
H16A0.0363−0.2788−0.17430.103*
H16B0.2154−0.3354−0.14400.103*
H16C0.2307−0.2022−0.19890.103*
C170.1886 (5)−0.1548 (4)−0.01838 (19)0.0510 (7)
C180.1247 (6)−0.3038 (4)0.0080 (2)0.0639 (9)
H180.0960−0.3934−0.02670.077*
N10.2228 (4)−0.1257 (3)−0.09119 (15)0.0526 (7)
O10.1051 (5)−0.3211 (3)0.07376 (16)0.0820 (9)
S10.79120 (13)0.78869 (10)0.29159 (5)0.0561 (3)
S20.61844 (16)0.52311 (12)0.40750 (5)0.0659 (3)
S30.38334 (14)0.32527 (10)0.26366 (5)0.0567 (3)
S40.52382 (14)0.56342 (9)0.16415 (4)0.0536 (2)
S50.37538 (13)0.30352 (9)0.01664 (4)0.0524 (2)
S60.24240 (13)0.05437 (9)0.11878 (4)0.0516 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.068 (3)0.109 (4)0.115 (4)0.023 (3)0.011 (3)−0.006 (3)
C20.074 (3)0.087 (3)0.069 (3)0.035 (2)0.011 (2)0.010 (2)
C30.073 (3)0.068 (2)0.066 (2)0.018 (2)0.023 (2)−0.0010 (19)
C40.061 (2)0.070 (2)0.0535 (19)0.0135 (18)0.0181 (17)0.0137 (17)
C50.099 (4)0.107 (4)0.122 (5)0.039 (3)0.027 (3)−0.005 (3)
C60.125 (5)0.117 (4)0.099 (4)0.061 (4)0.046 (3)0.022 (3)
C70.103 (4)0.083 (3)0.072 (3)0.031 (3)0.027 (3)0.009 (2)
C80.094 (3)0.082 (3)0.050 (2)0.032 (2)0.012 (2)0.0188 (19)
C90.0491 (17)0.0483 (16)0.0380 (15)0.0111 (14)0.0081 (13)−0.0007 (12)
C100.0561 (19)0.0532 (17)0.0366 (15)0.0176 (15)0.0089 (14)0.0004 (13)
C110.0497 (18)0.0417 (15)0.0383 (15)0.0053 (13)0.0094 (13)0.0053 (12)
C120.0484 (17)0.0414 (14)0.0378 (14)0.0038 (13)0.0107 (13)0.0066 (12)
C130.0437 (16)0.0421 (15)0.0410 (15)0.0058 (13)0.0039 (13)0.0028 (12)
C140.0460 (17)0.0414 (15)0.0388 (15)0.0052 (13)0.0042 (13)0.0038 (12)
C150.060 (2)0.0524 (18)0.0425 (16)0.0105 (16)0.0079 (15)0.0079 (14)
C160.072 (3)0.064 (2)0.061 (2)0.0154 (19)0.0018 (19)−0.0205 (18)
C170.0520 (19)0.0439 (16)0.0504 (18)0.0074 (14)0.0010 (14)0.0021 (13)
C180.072 (2)0.0439 (17)0.069 (2)0.0075 (17)0.0110 (19)0.0014 (16)
N10.0560 (17)0.0517 (15)0.0452 (14)0.0140 (13)0.0012 (12)−0.0056 (12)
O10.109 (2)0.0570 (15)0.0691 (18)0.0038 (15)0.0158 (17)0.0148 (13)
S10.0593 (5)0.0486 (4)0.0552 (5)0.0078 (4)0.0121 (4)−0.0066 (4)
S20.0881 (7)0.0735 (6)0.0349 (4)0.0241 (5)0.0069 (4)0.0004 (4)
S30.0694 (6)0.0540 (5)0.0389 (4)0.0006 (4)0.0148 (4)0.0056 (3)
S40.0736 (6)0.0425 (4)0.0383 (4)0.0066 (4)0.0071 (4)0.0051 (3)
S50.0704 (6)0.0412 (4)0.0381 (4)0.0023 (4)0.0097 (4)0.0066 (3)
S60.0623 (5)0.0431 (4)0.0422 (4)−0.0001 (4)0.0128 (4)0.0074 (3)

Geometric parameters (Å, °)

C1—C21.504 (6)C9—C101.342 (5)
C1—H1A0.9600C9—S11.756 (3)
C1—H1B0.9600C9—S41.757 (3)
C1—H1C0.9600C10—S21.739 (3)
C2—C31.500 (5)C10—S31.767 (3)
C2—H2A0.9700C11—C121.350 (4)
C2—H2B0.9700C11—S41.749 (3)
C3—C41.510 (5)C11—S31.753 (3)
C3—H3A0.9700C12—S51.757 (3)
C3—H3B0.9700C12—S61.769 (3)
C4—S11.818 (3)C13—C141.391 (4)
C4—H4A0.9700C13—C171.399 (4)
C4—H4B0.9700C13—S61.734 (3)
C5—C61.482 (7)C14—C151.385 (4)
C5—H5A0.9600C14—S51.744 (3)
C5—H5B0.9600C15—N11.344 (4)
C5—H5C0.9600C15—H150.9300
C6—C71.475 (7)C16—N11.475 (4)
C6—H6A0.9700C16—H16A0.9600
C6—H6B0.9700C16—H16B0.9600
C7—C81.528 (6)C16—H16C0.9600
C7—H7A0.9700C17—N11.387 (4)
C7—H7B0.9700C17—C181.413 (5)
C8—S21.807 (4)C18—O11.217 (5)
C8—H8A0.9700C18—H180.9300
C8—H8B0.9700
C2—C1—H1A109.5C7—C8—H8B109.3
C2—C1—H1B109.5S2—C8—H8B109.3
H1A—C1—H1B109.5H8A—C8—H8B107.9
C2—C1—H1C109.5C10—C9—S1125.3 (2)
H1A—C1—H1C109.5C10—C9—S4117.4 (2)
H1B—C1—H1C109.5S1—C9—S4116.88 (18)
C3—C2—C1115.1 (4)C9—C10—S2125.1 (3)
C3—C2—H2A108.5C9—C10—S3116.0 (2)
C1—C2—H2A108.5S2—C10—S3118.30 (19)
C3—C2—H2B108.5C12—C11—S4123.3 (2)
C1—C2—H2B108.5C12—C11—S3123.5 (2)
H2A—C2—H2B107.5S4—C11—S3113.19 (16)
C2—C3—C4115.4 (3)C11—C12—S5121.2 (2)
C2—C3—H3A108.4C11—C12—S6121.7 (2)
C4—C3—H3A108.4S5—C12—S6117.09 (16)
C2—C3—H3B108.4C14—C13—C17108.2 (3)
C4—C3—H3B108.4C14—C13—S6118.5 (2)
H3A—C3—H3B107.5C17—C13—S6133.4 (3)
C3—C4—S1114.2 (3)C15—C14—C13107.6 (3)
C3—C4—H4A108.7C15—C14—S5135.4 (2)
S1—C4—H4A108.7C13—C14—S5117.0 (2)
C3—C4—H4B108.7N1—C15—C14107.9 (3)
S1—C4—H4B108.7N1—C15—H15126.0
H4A—C4—H4B107.6C14—C15—H15126.0
C6—C5—H5A109.5N1—C16—H16A109.5
C6—C5—H5B109.5N1—C16—H16B109.5
H5A—C5—H5B109.5H16A—C16—H16B109.5
C6—C5—H5C109.5N1—C16—H16C109.5
H5A—C5—H5C109.5H16A—C16—H16C109.5
H5B—C5—H5C109.5H16B—C16—H16C109.5
C7—C6—C5112.5 (5)N1—C17—C13105.7 (3)
C7—C6—H6A109.1N1—C17—C18126.9 (3)
C5—C6—H6A109.1C13—C17—C18127.3 (3)
C7—C6—H6B109.1O1—C18—C17123.6 (3)
C5—C6—H6B109.1O1—C18—H18118.2
H6A—C6—H6B107.8C17—C18—H18118.2
C6—C7—C8112.7 (4)C15—N1—C17110.6 (3)
C6—C7—H7A109.0C15—N1—C16124.0 (3)
C8—C7—H7A109.0C17—N1—C16125.0 (3)
C6—C7—H7B109.0C9—S1—C4101.26 (16)
C8—C7—H7B109.0C10—S2—C8102.69 (17)
H7A—C7—H7B107.8C11—S3—C1094.65 (15)
C7—C8—S2111.8 (3)C11—S4—C994.30 (15)
C7—C8—H8A109.3C14—S5—C1293.61 (14)
S2—C8—H8A109.3C13—S6—C1293.09 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.793.444 (5)125
C4—H4A···O1i0.972.713.368 (5)126
C18—H18···O1ii0.932.583.412 (5)150

Symmetry codes: (i) x+1, y+1, z; (ii) −x, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5074).

References

  • An, C. X., Hou, R. B., Qiu, H., Zhao, J., Yin, B. Z. & Su, Z. M. (2009). Chin. J. Appl. Chem.26, 795–800.
  • Hansel, J. A., Becher, J., Jeppesen, J. O., Levilain, E., Nielsen, M. B., Petersen, B. M., Petersen, J. C. & Sahin, Y. (2004). J. Mater. Chem.14, 179–184.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Jeppesen, J. O., Takimiya, K., Jensen, F. & Becher, J. (1999). Org. Lett.1, 1291–1294.
  • Leng, F.-S., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o3092. [PMC free article] [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography