PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3293.
Published online 2010 November 24. doi:  10.1107/S1600536810048038
PMCID: PMC3011519

N-[(E)-1,3-Benzodioxol-5-yl­methyl­idene]-4-methyl­aniline

Abstract

The two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C15H13NO2, differ in conformation, with the virtually planar 4-methyl­aniline (r.m.s. deviations of 0.0511 and 0.0082 Å) and piperonal groups (r.m.s. deviations of 0.0241 and 0.0486 Å) forming dihedral angles of 19.40 (5) and 42.90 (6)°. In the crystal, mol­ecules are linked by C—H(...)O and C—H(...)π inter­actions. The H atoms of the two methyl groups are disordered over two sets of sites of equal occupancy.

Related literature

For background to our ongoing project on the synthesis of various Schiff bases of piperonal and then their metal complexation and for a related structure, see: Tahir et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3293-scheme1.jpg

Experimental

Crystal data

  • C15H13NO2
  • M r = 239.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3293-efi1.jpg
  • a = 10.6914 (4) Å
  • b = 10.7680 (3) Å
  • c = 13.3332 (5) Å
  • α = 89.443 (2)°
  • β = 67.112 (2)°
  • γ = 62.534 (1)°
  • V = 1227.41 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.32 × 0.22 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.988
  • 18069 measured reflections
  • 4417 independent reflections
  • 3294 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.03
  • 4417 reflections
  • 323 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048038/gk2324sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048038/gk2324Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) is being reported as a part of our ongoing project related to synthesis of various Schiff bases of piperonal and then their metal complexation (Tahir et al., 2010).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, 4-methylanilinic group A (C1—C7/N1) and the piperonalic group B (C8—C15/O1/O2) are almost planar with r. m. s deviation of 0.0511 and 0.0241 Å, respectively. The dihedral angle between A/B is 42.90 (6)°. In second molecule, the 4-methylanilinic group C (C16—C22/N2) and the piperonalic group D (C23—C30/O3/O4) are also almost planar with r. m. s deviation of 0.0082 and 0.0486 Å, respectively. The dihedral angle between C/D is 19.40 (5)°. The molecules are interlinked through hydrogen bonds of C—H···O type (Table 1, Fig. 2). The C—H···π interactions (Table 1) play important role in consolidating the crystal packing. The H atoms of methyl groups are disordered over two set of sites with equal occupancy ratio.

Experimental

Equimolar quantities of 4-methylaniline and and piperonal were refluxed in methanol along with few drops of acetic acid as catalyst for 30 min resulting in orange yellow solution. The solution was kept at room temperature which affoarded orange yellow prisms after a week.

Refinement

The H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H-atoms and x = 1.2 for aryl H-atoms. The H-atoms of methyl groups are disordered over two set of sites with equal occupancy ratio.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The partial crystal packing (PLATON; Spek, 2009)

Crystal data

C15H13NO2Z = 4
Mr = 239.26F(000) = 504
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6914 (4) ÅCell parameters from 3294 reflections
b = 10.7680 (3) Åθ = 2.2–25.3°
c = 13.3332 (5) ŵ = 0.09 mm1
α = 89.443 (2)°T = 296 K
β = 67.112 (2)°Prisms, yellow
γ = 62.534 (1)°0.32 × 0.22 × 0.18 mm
V = 1227.41 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer4417 independent reflections
Radiation source: fine-focus sealed tube3294 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = −11→12
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −12→12
Tmin = 0.980, Tmax = 0.988l = −16→16
18069 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.050P)2 + 0.2009P] where P = (Fo2 + 2Fc2)/3
4417 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.85323 (13)0.05174 (12)0.16217 (13)0.0823 (5)
O20.84925 (13)−0.15617 (11)0.13086 (10)0.0649 (4)
N10.27161 (15)0.46441 (13)0.35889 (10)0.0525 (4)
C10.12804 (17)0.59481 (15)0.39573 (12)0.0479 (5)
C20.10114 (18)0.70402 (16)0.46908 (13)0.0545 (5)
C3−0.0303 (2)0.83722 (17)0.50051 (14)0.0594 (6)
C4−0.1380 (2)0.86823 (17)0.45801 (14)0.0603 (6)
C5−0.1111 (2)0.75802 (19)0.38577 (16)0.0702 (7)
C60.0193 (2)0.62326 (18)0.35508 (15)0.0649 (6)
C7−0.27620 (18)1.01681 (13)0.48639 (16)0.0868 (8)
C80.27767 (15)0.34643 (13)0.33754 (12)0.0518 (5)
C90.42524 (17)0.21151 (15)0.28682 (12)0.0476 (5)
C100.56824 (18)0.20906 (15)0.25598 (13)0.0527 (5)
C110.70124 (18)0.08074 (16)0.20435 (13)0.0512 (5)
C120.69907 (18)−0.04387 (14)0.18398 (12)0.0481 (5)
C130.56266 (19)−0.04509 (16)0.21265 (13)0.0547 (6)
C140.42526 (19)0.08612 (16)0.26411 (13)0.0534 (6)
C150.9484 (2)−0.09882 (17)0.12271 (18)0.0729 (7)
O3−0.35490 (13)1.45856 (11)0.39324 (10)0.0723 (4)
O4−0.34615 (13)1.64734 (11)0.31303 (10)0.0668 (4)
N20.18413 (14)1.00194 (12)0.16824 (10)0.0483 (4)
C160.31939 (16)0.86467 (14)0.12541 (12)0.0431 (5)
C170.43932 (17)0.81718 (16)0.01782 (12)0.0513 (5)
C180.56401 (18)0.67969 (17)−0.01516 (13)0.0544 (5)
C190.57678 (17)0.58422 (15)0.05568 (13)0.0499 (5)
C200.45610 (19)0.63169 (16)0.16171 (14)0.0563 (6)
C210.32925 (18)0.76868 (16)0.19582 (13)0.0532 (5)
C220.71353 (14)0.43394 (12)0.01711 (12)0.0656 (6)
C230.18014 (14)1.10785 (12)0.12391 (11)0.0479 (5)
C240.04255 (17)1.25022 (14)0.16788 (12)0.0439 (5)
C25−0.09113 (17)1.27386 (15)0.26267 (12)0.0485 (5)
C26−0.21271 (17)1.40978 (15)0.30257 (12)0.0486 (5)
C27−0.20845 (18)1.52255 (15)0.25424 (13)0.0484 (5)
C28−0.08194 (19)1.50285 (16)0.16051 (13)0.0539 (6)
C290.04428 (18)1.36396 (15)0.11813 (13)0.0512 (5)
C30−0.4330 (2)1.61064 (18)0.40804 (17)0.0795 (7)
H20.172880.687330.497670.0655*
H3−0.046780.907840.551510.0712*
H5−0.182600.774850.356920.0843*
H60.033490.551340.306620.0778*
H7A−0.298531.067960.555260.1302*0.500
H7B−0.365761.010180.493750.1302*0.500
H7C−0.252111.066730.428190.1302*0.500
H7D−0.312401.028620.429530.1302*0.500
H7E−0.245171.086400.491060.1302*0.500
H7F−0.358831.029840.556610.1302*0.500
H80.184790.346040.354840.0622*
H100.571630.291540.270280.0632*
H130.56126−0.128780.198670.0656*
H140.329930.089640.283960.0640*
H15A1.00499−0.140570.167090.0875*
H15B1.02381−0.120570.045950.0875*
H170.435180.87851−0.031900.0616*
H180.642360.64993−0.087510.0653*
H200.460380.570050.211200.0676*
H210.249120.796900.267300.0638*
H22A0.806630.436430.005730.0984*0.500
H22B0.726850.39048−0.051500.0984*0.500
H22C0.694260.379150.072520.0984*0.500
H22D0.678530.367610.012100.0984*0.500
H22E0.758310.413560.069330.0984*0.500
H22F0.790900.42489−0.054680.0984*0.500
H230.267961.094090.061290.0575*
H25−0.096081.199380.296670.0582*
H28−0.080111.578310.126680.0647*
H290.132661.346640.054460.0615*
H30A−0.439321.653120.474900.0954*
H30B−0.538391.646390.415590.0954*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0454 (7)0.0472 (7)0.1337 (12)−0.0163 (6)−0.0273 (7)−0.0082 (7)
O20.0563 (7)0.0391 (6)0.0825 (8)−0.0145 (6)−0.0256 (6)0.0000 (5)
N10.0473 (8)0.0487 (7)0.0477 (8)−0.0166 (6)−0.0165 (6)0.0037 (6)
C10.0435 (9)0.0477 (8)0.0422 (8)−0.0183 (7)−0.0143 (7)0.0074 (7)
C20.0507 (10)0.0553 (9)0.0512 (9)−0.0237 (8)−0.0193 (8)0.0069 (7)
C30.0606 (11)0.0488 (9)0.0530 (10)−0.0229 (9)−0.0151 (9)0.0045 (7)
C40.0546 (10)0.0490 (9)0.0536 (10)−0.0149 (8)−0.0149 (8)0.0145 (8)
C50.0645 (12)0.0657 (11)0.0755 (12)−0.0200 (10)−0.0410 (10)0.0156 (10)
C60.0650 (12)0.0556 (10)0.0672 (11)−0.0195 (9)−0.0350 (10)0.0022 (8)
C70.0789 (14)0.0574 (11)0.0812 (14)−0.0085 (10)−0.0263 (11)0.0199 (10)
C80.0470 (9)0.0536 (9)0.0472 (9)−0.0224 (8)−0.0166 (7)0.0104 (7)
C90.0474 (9)0.0462 (8)0.0435 (8)−0.0203 (7)−0.0181 (7)0.0101 (6)
C100.0530 (10)0.0398 (8)0.0610 (10)−0.0210 (8)−0.0232 (8)0.0034 (7)
C110.0450 (9)0.0452 (8)0.0600 (10)−0.0202 (8)−0.0222 (8)0.0052 (7)
C120.0513 (10)0.0371 (8)0.0489 (9)−0.0164 (7)−0.0221 (7)0.0080 (6)
C130.0666 (11)0.0447 (8)0.0590 (10)−0.0321 (8)−0.0276 (9)0.0141 (7)
C140.0527 (10)0.0549 (9)0.0563 (10)−0.0311 (8)−0.0219 (8)0.0166 (7)
C150.0519 (11)0.0451 (9)0.0973 (14)−0.0146 (9)−0.0212 (10)0.0035 (9)
O30.0521 (7)0.0471 (6)0.0740 (8)−0.0125 (6)−0.0016 (6)0.0077 (6)
O40.0593 (7)0.0405 (6)0.0775 (8)−0.0121 (6)−0.0237 (6)0.0094 (5)
N20.0434 (7)0.0425 (7)0.0483 (7)−0.0166 (6)−0.0156 (6)0.0054 (5)
C160.0385 (8)0.0420 (8)0.0451 (8)−0.0178 (7)−0.0172 (7)0.0047 (6)
C170.0473 (9)0.0499 (9)0.0474 (9)−0.0192 (8)−0.0179 (8)0.0118 (7)
C180.0413 (9)0.0562 (9)0.0484 (9)−0.0171 (8)−0.0119 (7)0.0019 (7)
C190.0421 (9)0.0448 (8)0.0634 (10)−0.0189 (7)−0.0267 (8)0.0049 (7)
C200.0604 (11)0.0469 (9)0.0606 (10)−0.0241 (8)−0.0285 (9)0.0165 (8)
C210.0519 (10)0.0502 (9)0.0472 (9)−0.0233 (8)−0.0144 (8)0.0089 (7)
C220.0526 (10)0.0481 (9)0.0890 (13)−0.0156 (8)−0.0355 (10)0.0026 (8)
C230.0456 (9)0.0484 (8)0.0440 (8)−0.0234 (7)−0.0139 (7)0.0039 (7)
C240.0464 (9)0.0421 (8)0.0430 (8)−0.0214 (7)−0.0197 (7)0.0053 (6)
C250.0528 (9)0.0399 (8)0.0480 (9)−0.0223 (7)−0.0182 (8)0.0091 (6)
C260.0445 (9)0.0436 (8)0.0481 (9)−0.0186 (7)−0.0151 (7)0.0049 (7)
C270.0502 (9)0.0380 (8)0.0562 (9)−0.0179 (7)−0.0272 (8)0.0072 (7)
C280.0661 (11)0.0472 (9)0.0588 (10)−0.0325 (8)−0.0315 (9)0.0190 (7)
C290.0535 (10)0.0519 (9)0.0485 (9)−0.0302 (8)−0.0173 (8)0.0101 (7)
C300.0655 (12)0.0465 (10)0.0794 (13)−0.0093 (9)−0.0105 (10)0.0069 (9)

Geometric parameters (Å, °)

O1—C111.371 (3)C8—H80.9300
O1—C151.421 (2)C10—H100.9300
O2—C121.372 (2)C13—H130.9300
O2—C151.425 (3)C14—H140.9300
O3—C261.377 (2)C15—H15B0.9700
O3—C301.426 (2)C15—H15A0.9700
O4—C271.373 (2)C16—C171.394 (2)
O4—C301.427 (2)C16—C211.385 (2)
N1—C11.417 (2)C17—C181.378 (2)
N1—C81.271 (2)C18—C191.386 (2)
N2—C161.416 (2)C19—C201.383 (2)
N2—C231.2702 (17)C19—C221.507 (2)
C1—C21.383 (2)C20—C211.382 (2)
C1—C61.378 (3)C23—C241.458 (2)
C2—C31.379 (2)C24—C251.404 (2)
C3—C41.381 (3)C24—C291.391 (2)
C4—C51.382 (3)C25—C261.355 (2)
C4—C71.511 (2)C26—C271.380 (2)
C5—C61.385 (3)C27—C281.365 (3)
C8—C91.460 (2)C28—C291.392 (2)
C9—C101.408 (3)C17—H170.9300
C9—C141.387 (2)C18—H180.9300
C10—C111.360 (2)C20—H200.9300
C11—C121.384 (2)C21—H210.9300
C12—C131.363 (3)C22—H22A0.9600
C13—C141.395 (2)C22—H22B0.9600
C2—H20.9300C22—H22C0.9600
C3—H30.9300C22—H22D0.9600
C5—H50.9300C22—H22E0.9600
C6—H60.9300C22—H22F0.9600
C7—H7D0.9600C23—H230.9300
C7—H7E0.9600C25—H250.9300
C7—H7A0.9600C28—H280.9300
C7—H7B0.9600C29—H290.9300
C7—H7C0.9600C30—H30A0.9700
C7—H7F0.9600C30—H30B0.9700
C11—O1—C15106.38 (15)O2—C15—H15A110.00
C12—O2—C15105.90 (13)O2—C15—H15B110.00
C26—O3—C30105.62 (14)O1—C15—H15A110.00
C27—O4—C30105.60 (12)N2—C16—C17125.51 (13)
C1—N1—C8120.32 (17)N2—C16—C21116.66 (14)
C16—N2—C23121.55 (14)C17—C16—C21117.79 (14)
N1—C1—C2118.47 (17)C16—C17—C18120.24 (14)
N1—C1—C6123.39 (15)C17—C18—C19122.32 (15)
C2—C1—C6117.89 (16)C18—C19—C20116.99 (15)
C1—C2—C3121.09 (19)C18—C19—C22121.24 (14)
C2—C3—C4121.56 (17)C20—C19—C22121.74 (14)
C3—C4—C5116.92 (17)C19—C20—C21121.48 (15)
C5—C4—C7121.5 (2)C16—C21—C20121.15 (15)
C3—C4—C7121.57 (17)N2—C23—C24122.21 (14)
C4—C5—C6121.9 (2)C23—C24—C25119.96 (13)
C1—C6—C5120.59 (18)C23—C24—C29120.34 (15)
N1—C8—C9122.35 (17)C25—C24—C29119.68 (14)
C8—C9—C10120.28 (15)C24—C25—C26117.21 (14)
C8—C9—C14119.97 (18)O3—C26—C25127.71 (14)
C10—C9—C14119.68 (15)O3—C26—C27109.61 (13)
C9—C10—C11117.06 (16)C25—C26—C27122.69 (16)
O1—C11—C12109.29 (15)O4—C27—C26109.96 (15)
O1—C11—C10128.18 (17)O4—C27—C28128.39 (14)
C10—C11—C12122.5 (2)C26—C27—C28121.64 (15)
O2—C12—C11109.89 (17)C27—C28—C29116.57 (15)
O2—C12—C13128.21 (15)C24—C29—C28122.18 (16)
C11—C12—C13121.88 (15)O3—C30—O4108.15 (15)
C12—C13—C14116.30 (17)C16—C17—H17120.00
C9—C14—C13122.6 (2)C18—C17—H17120.00
O1—C15—O2108.12 (17)C17—C18—H18119.00
C1—C2—H2119.00C19—C18—H18119.00
C3—C2—H2119.00C19—C20—H20119.00
C2—C3—H3119.00C21—C20—H20119.00
C4—C3—H3119.00C16—C21—H21119.00
C4—C5—H5119.00C20—C21—H21119.00
C6—C5—H5119.00C19—C22—H22A109.00
C5—C6—H6120.00C19—C22—H22B109.00
C1—C6—H6120.00C19—C22—H22C109.00
C4—C7—H7A109.00C19—C22—H22D109.00
C4—C7—H7B109.00C19—C22—H22E109.00
C4—C7—H7C109.00C19—C22—H22F109.00
H7A—C7—H7B109.00H22A—C22—H22B109.00
H7A—C7—H7C109.00H22A—C22—H22C109.00
H7A—C7—H7D141.00H22A—C22—H22D141.00
H7A—C7—H7E56.00H22A—C22—H22E56.00
H7A—C7—H7F56.00H22A—C22—H22F56.00
H7B—C7—H7C109.00H22B—C22—H22C109.00
H7B—C7—H7D56.00H22B—C22—H22D56.00
H7B—C7—H7E141.00H22B—C22—H22E141.00
H7B—C7—H7F56.00H22B—C22—H22F56.00
H7C—C7—H7D56.00H22C—C22—H22D56.00
H7C—C7—H7E56.00H22C—C22—H22E56.00
H7C—C7—H7F141.00H22C—C22—H22F141.00
H7D—C7—H7E109.00H22D—C22—H22E109.00
H7D—C7—H7F109.00H22D—C22—H22F109.00
H7E—C7—H7F109.00H22E—C22—H22F109.00
C4—C7—H7F109.00N2—C23—H23119.00
C4—C7—H7E109.00C24—C23—H23119.00
C4—C7—H7D109.00C24—C25—H25121.00
N1—C8—H8119.00C26—C25—H25121.00
C9—C8—H8119.00C27—C28—H28122.00
C9—C10—H10121.00C29—C28—H28122.00
C11—C10—H10121.00C24—C29—H29119.00
C12—C13—H13122.00C28—C29—H29119.00
C14—C13—H13122.00O3—C30—H30A110.00
C9—C14—H14119.00O3—C30—H30B110.00
C13—C14—H14119.00O4—C30—H30A110.00
O1—C15—H15B110.00O4—C30—H30B110.00
H15A—C15—H15B108.00H30A—C30—H30B108.00
C15—O1—C11—C10176.76 (18)C9—C10—C11—O1176.83 (16)
C15—O1—C11—C12−5.02 (19)C9—C10—C11—C12−1.2 (2)
C11—O1—C15—O26.6 (2)C10—C11—C12—O2179.84 (15)
C15—O2—C12—C112.67 (18)C10—C11—C12—C131.3 (3)
C15—O2—C12—C13−178.93 (17)O1—C11—C12—C13−177.02 (15)
C12—O2—C15—O1−5.73 (19)O1—C11—C12—O21.50 (18)
C26—O3—C30—O410.3 (2)O2—C12—C13—C14−178.49 (15)
C30—O3—C26—C27−7.0 (2)C11—C12—C13—C14−0.3 (2)
C30—O3—C26—C25173.0 (2)C12—C13—C14—C9−0.9 (2)
C27—O4—C30—O3−9.8 (2)N2—C16—C17—C18−178.61 (19)
C30—O4—C27—C28−175.6 (2)C21—C16—C17—C18−1.2 (3)
C30—O4—C27—C265.5 (2)N2—C16—C21—C20179.60 (19)
C1—N1—C8—C9172.46 (13)C17—C16—C21—C201.9 (3)
C8—N1—C1—C6−38.5 (2)C16—C17—C18—C19−0.5 (3)
C8—N1—C1—C2147.31 (16)C17—C18—C19—C201.4 (3)
C16—N2—C23—C24−179.17 (16)C17—C18—C19—C22179.34 (19)
C23—N2—C16—C21161.80 (18)C18—C19—C20—C21−0.6 (3)
C23—N2—C16—C17−20.7 (3)C22—C19—C20—C21−178.55 (19)
N1—C1—C2—C3174.47 (15)C19—C20—C21—C16−1.0 (3)
C2—C1—C6—C51.1 (3)N2—C23—C24—C250.4 (3)
N1—C1—C6—C5−173.16 (17)N2—C23—C24—C29178.66 (17)
C6—C1—C2—C30.0 (3)C23—C24—C25—C26177.07 (17)
C1—C2—C3—C4−1.8 (3)C29—C24—C25—C26−1.2 (3)
C2—C3—C4—C7−175.81 (17)C23—C24—C29—C28−176.98 (18)
C2—C3—C4—C52.4 (3)C25—C24—C29—C281.3 (3)
C3—C4—C5—C6−1.4 (3)C24—C25—C26—O3179.66 (18)
C7—C4—C5—C6176.84 (18)C24—C25—C26—C27−0.4 (3)
C4—C5—C6—C1−0.3 (3)O3—C26—C27—O41.0 (2)
N1—C8—C9—C14−179.24 (15)O3—C26—C27—C28−178.02 (18)
N1—C8—C9—C10−2.3 (2)C25—C26—C27—O4−179.03 (17)
C8—C9—C10—C11−176.93 (14)C25—C26—C27—C282.0 (3)
C14—C9—C10—C110.1 (2)O4—C27—C28—C29179.37 (19)
C10—C9—C14—C131.0 (2)C26—C27—C28—C29−1.9 (3)
C8—C9—C14—C13177.97 (15)C27—C28—C29—C240.2 (3)

Hydrogen-bond geometry (Å, °)

Cg3, Cg5 and Cg6 are the centroids of the C9–C14, C16–C21 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28···O2i0.932.593.447 (2)153
C17—H17···Cg3ii0.932.733.5306 (16)145
C22—H22B···Cg5ii0.962.863.5480 (18)130
C22—H22D···Cg5ii0.962.713.5480 (18)146
C22—H22E···Cg6iii0.962.913.8610 (18)169

Symmetry codes: (i) x−1, y+2, z; (ii) −x+1, −y+1, −z; (iii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2324).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010). Acta Cryst. E66, o2672. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography