PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1535–m1536.
Published online 2010 November 10. doi:  10.1107/S1600536810045071
PMCID: PMC3011516

(Benzyl­diphenyl­phosphane)chlorido­gold(I)

Abstract

In the title compound, [AuCl(C19H17P)], the AuI atom exists within a P and Cl donor set that constitutes an almost linear geometry. The three phenyl rings make dihedral angles of 38.33 (14), 81.26 (15) and 81.28 (14)° with each other. In the crystal, mol­ecules are linked into chains along the b axis by inter­molecular C—H(...)Cl hydrogen bonds.

Related literature

For general background to gold complexes, see: Parish & Cottrill (1987 [triangle]); Tiekink (2002 [triangle]); Baenziger et al. (1976 [triangle]); Chiu et al. (2009 [triangle]). For the synthesis of (CH3)2SAuCl, see: Francis (1901 [triangle]). For a related structure, see: Shawkataly et al. (2010 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1535-scheme1.jpg

Experimental

Crystal data

  • [AuCl(C19H17P)]
  • M r = 508.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1535-efi1.jpg
  • a = 16.1403 (11) Å
  • b = 9.0380 (7) Å
  • c = 23.5259 (17) Å
  • β = 91.012 (2)°
  • V = 3431.3 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 8.82 mm−1
  • T = 100 K
  • 0.27 × 0.22 × 0.12 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.196, T max = 0.408
  • 28002 measured reflections
  • 7489 independent reflections
  • 6751 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.053
  • S = 1.14
  • 7489 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −2.38 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045071/is2625sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045071/is2625Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. AT is grateful to USM for a Post-Doctoral Fellowship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Gold and gold compounds have been used for medicinal purposes over a long period of time (Parish and Cottrill, 1987). Phosphinegold (I) forms an important class of compounds of gold (Baenziger et al., 1976). Their thiolate derivatives are compounds with well known medicinal properties (Tiekink, 2002). They are conveniently prepared from their phosphinegold(I) chloride precursors and it is in this context that the title compound C6H5CH2P(C6H5)2AuCl, was prepared and characterized. Complex of Iridium (III) with benzyldiphenyl phospine is reported (Chiu et al., 2009), however, no such metal complex with gold (I) is known. Herein, we report the crystal structure of the title complex C6H5CH2P(C6H5)2AuCl.

In the title compound (Fig. 1), the P1–Au1–Cl1 is almost linear with an angle of 173.62 (2)°. The three phosphine-substituted phenyl rings (C1–C6, C8–C13 and C14–C19) make dihedral angles of 38.33 (14), 81.26 (15) and 81.28 (14)° with each other (C1–C6/C8–C13, C1–C6/C14–C19 and C8–C13/C14–C19). The geometric parameters are comparable to its related structure (Shawkataly et al., 2010). In the crystal structure, the molecules are linked into chains along the b axis by intermolecular C7—H7B···Cl1 hydrogen bonds (Fig. 2, Table 2).

Experimental

The title compound was prepared by mixing equimolar quantities of Me2SAuCl, obtained as per conventional method (Francis, 1901) and C6H5CH2P(C6H5)2 (Strem Chemicals Co. Ltd.) in CH2Cl2 held at room temperature. The solution was stirred for 2 h and white crystalline solid was recovered after the removal of solvent under vacuum. The colourless plate-like crystals were obtained in 90% yield from the layering of methanol over a concentrated dichloromethane solution of the compound (m.p. 208 °C, decomposition) kept at refrigerator for couple of days.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.43 and -2.38 e Å-3, respectively, were located 0.73 and 0.60 Å from the Au1 and Cl1 atom, respectively.

Figures

Fig. 1.
The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

[AuCl(C19H17P)]F(000) = 1936
Mr = 508.71Dx = 1.969 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9893 reflections
a = 16.1403 (11) Åθ = 2.7–37.4°
b = 9.0380 (7) ŵ = 8.82 mm1
c = 23.5259 (17) ÅT = 100 K
β = 91.012 (2)°Plate, colourless
V = 3431.3 (4) Å30.27 × 0.22 × 0.12 mm
Z = 8

Data collection

Bruker APEXII DUO CCD area-detector diffractometer7489 independent reflections
Radiation source: fine-focus sealed tube6751 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 35.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −26→26
Tmin = 0.196, Tmax = 0.408k = −7→14
28002 measured reflectionsl = −37→37

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.P)2 + 12.0783P] where P = (Fo2 + 2Fc2)/3
7489 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = −2.37 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au10.323189 (5)0.699677 (10)0.101304 (4)0.01995 (3)
Cl10.31261 (4)0.94885 (7)0.08307 (3)0.02787 (12)
P10.34216 (4)0.45646 (7)0.11042 (3)0.01953 (11)
C10.11935 (17)0.4585 (3)0.08496 (12)0.0293 (5)
H1A0.13010.51680.05340.035*
C20.04361 (18)0.4704 (4)0.11189 (14)0.0354 (6)
H2A0.00390.53640.09800.042*
C30.02680 (18)0.3854 (4)0.15894 (14)0.0367 (7)
H3A−0.02410.39370.17660.044*
C40.08609 (19)0.2873 (4)0.17987 (14)0.0353 (6)
H4A0.07540.23060.21190.042*
C50.16161 (18)0.2743 (3)0.15271 (13)0.0304 (5)
H5A0.20100.20770.16650.036*
C60.17911 (15)0.3596 (3)0.10519 (11)0.0243 (5)
C70.26100 (16)0.3445 (3)0.07589 (11)0.0238 (4)
H7A0.25450.37510.03650.029*
H7B0.27770.24140.07620.029*
C80.34892 (14)0.3852 (3)0.18224 (10)0.0210 (4)
C90.31074 (17)0.4608 (3)0.22617 (11)0.0264 (5)
H9A0.28670.55280.21950.032*
C100.3088 (2)0.3977 (4)0.27999 (12)0.0334 (6)
H10A0.28190.44650.30920.040*
C110.34654 (19)0.2628 (4)0.29046 (12)0.0305 (5)
H11A0.34610.22240.32680.037*
C120.38490 (18)0.1881 (3)0.24694 (13)0.0313 (5)
H12A0.40970.09690.25400.038*
C130.38647 (18)0.2485 (3)0.19300 (12)0.0284 (5)
H13A0.41250.19810.16380.034*
C140.43910 (15)0.4021 (3)0.07884 (10)0.0208 (4)
C150.51087 (17)0.4641 (4)0.10215 (13)0.0322 (6)
H15A0.50740.52930.13260.039*
C160.58762 (17)0.4292 (4)0.08027 (13)0.0305 (5)
H16A0.63550.47080.09600.037*
C170.59297 (17)0.3323 (3)0.03495 (12)0.0277 (5)
H17A0.64450.30800.02050.033*
C180.52207 (19)0.2721 (4)0.01125 (13)0.0349 (6)
H18A0.52590.2081−0.01960.042*
C190.44462 (17)0.3060 (3)0.03307 (12)0.0296 (5)
H19A0.39690.26450.01700.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au10.01950 (4)0.01675 (4)0.02361 (4)0.00189 (3)0.00046 (3)−0.00088 (3)
Cl10.0251 (3)0.0164 (2)0.0422 (3)0.0030 (2)0.0035 (2)0.0030 (2)
P10.0198 (2)0.0172 (3)0.0215 (3)0.0010 (2)−0.0013 (2)−0.0018 (2)
C10.0257 (11)0.0302 (13)0.0317 (13)0.0055 (10)−0.0051 (10)−0.0069 (10)
C20.0240 (12)0.0407 (17)0.0414 (16)0.0082 (11)−0.0059 (11)−0.0109 (13)
C30.0254 (12)0.0434 (18)0.0412 (16)−0.0034 (12)0.0006 (11)−0.0158 (13)
C40.0312 (13)0.0360 (16)0.0387 (15)−0.0118 (12)0.0010 (11)−0.0027 (12)
C50.0278 (12)0.0252 (13)0.0381 (14)−0.0022 (10)−0.0032 (10)0.0006 (10)
C60.0218 (10)0.0208 (11)0.0302 (12)−0.0006 (8)−0.0048 (9)−0.0058 (9)
C70.0251 (10)0.0199 (10)0.0262 (11)0.0007 (9)−0.0040 (9)−0.0037 (8)
C80.0201 (9)0.0202 (10)0.0228 (10)0.0004 (8)−0.0015 (8)0.0001 (8)
C90.0300 (12)0.0212 (11)0.0279 (12)0.0021 (9)0.0018 (9)−0.0007 (9)
C100.0443 (16)0.0291 (13)0.0270 (12)−0.0017 (12)0.0070 (11)−0.0016 (10)
C110.0350 (13)0.0309 (14)0.0255 (12)−0.0053 (11)0.0000 (10)0.0042 (10)
C120.0322 (13)0.0298 (14)0.0319 (13)0.0053 (11)0.0004 (10)0.0087 (11)
C130.0309 (12)0.0258 (12)0.0287 (12)0.0081 (10)0.0022 (10)0.0035 (10)
C140.0217 (9)0.0188 (10)0.0219 (10)0.0041 (8)−0.0011 (8)0.0012 (8)
C150.0241 (11)0.0358 (15)0.0367 (14)0.0007 (11)−0.0008 (10)−0.0128 (12)
C160.0221 (11)0.0350 (15)0.0343 (13)0.0024 (10)−0.0021 (10)−0.0026 (11)
C170.0251 (11)0.0327 (14)0.0253 (11)0.0041 (10)0.0036 (9)0.0037 (10)
C180.0314 (13)0.0429 (18)0.0305 (13)0.0014 (12)0.0055 (11)−0.0118 (12)
C190.0271 (11)0.0351 (14)0.0266 (12)0.0002 (11)0.0002 (9)−0.0081 (11)

Geometric parameters (Å, °)

Au1—P12.2292 (7)C9—C101.389 (4)
Au1—Cl12.2983 (7)C9—H9A0.9300
P1—C81.810 (3)C10—C111.383 (5)
P1—C141.812 (2)C10—H10A0.9300
P1—C71.834 (3)C11—C121.382 (4)
C1—C21.391 (4)C11—H11A0.9300
C1—C61.393 (4)C12—C131.382 (4)
C1—H1A0.9300C12—H12A0.9300
C2—C31.379 (5)C13—H13A0.9300
C2—H2A0.9300C14—C191.387 (4)
C3—C41.388 (5)C14—C151.391 (4)
C3—H3A0.9300C15—C161.386 (4)
C4—C51.391 (4)C15—H15A0.9300
C4—H4A0.9300C16—C171.383 (4)
C5—C61.391 (4)C16—H16A0.9300
C5—H5A0.9300C17—C181.376 (4)
C6—C71.508 (4)C17—H17A0.9300
C7—H7A0.9700C18—C191.394 (4)
C7—H7B0.9700C18—H18A0.9300
C8—C91.391 (4)C19—H19A0.9300
C8—C131.398 (4)
P1—Au1—Cl1173.62 (2)C10—C9—C8119.6 (3)
C8—P1—C14104.37 (11)C10—C9—H9A120.2
C8—P1—C7104.37 (12)C8—C9—H9A120.2
C14—P1—C7106.50 (12)C11—C10—C9120.4 (3)
C8—P1—Au1116.52 (8)C11—C10—H10A119.8
C14—P1—Au1110.26 (8)C9—C10—H10A119.8
C7—P1—Au1113.94 (9)C12—C11—C10120.0 (3)
C2—C1—C6120.2 (3)C12—C11—H11A120.0
C2—C1—H1A119.9C10—C11—H11A120.0
C6—C1—H1A119.9C13—C12—C11120.2 (3)
C3—C2—C1120.6 (3)C13—C12—H12A119.9
C3—C2—H2A119.7C11—C12—H12A119.9
C1—C2—H2A119.7C12—C13—C8120.0 (3)
C2—C3—C4119.8 (3)C12—C13—H13A120.0
C2—C3—H3A120.1C8—C13—H13A120.0
C4—C3—H3A120.1C19—C14—C15119.6 (2)
C3—C4—C5119.7 (3)C19—C14—P1123.8 (2)
C3—C4—H4A120.2C15—C14—P1116.63 (19)
C5—C4—H4A120.2C16—C15—C14120.4 (3)
C6—C5—C4120.9 (3)C16—C15—H15A119.8
C6—C5—H5A119.5C14—C15—H15A119.8
C4—C5—H5A119.5C17—C16—C15119.9 (3)
C5—C6—C1118.8 (3)C17—C16—H16A120.0
C5—C6—C7120.6 (2)C15—C16—H16A120.0
C1—C6—C7120.6 (3)C18—C17—C16120.0 (3)
C6—C7—P1111.89 (17)C18—C17—H17A120.0
C6—C7—H7A109.2C16—C17—H17A120.0
P1—C7—H7A109.2C17—C18—C19120.6 (3)
C6—C7—H7B109.2C17—C18—H18A119.7
P1—C7—H7B109.2C19—C18—H18A119.7
H7A—C7—H7B107.9C14—C19—C18119.6 (3)
C9—C8—C13119.7 (2)C14—C19—H19A120.2
C9—C8—P1119.93 (19)C18—C19—H19A120.2
C13—C8—P1120.16 (19)
C6—C1—C2—C30.3 (5)C8—C9—C10—C111.9 (5)
C1—C2—C3—C40.3 (5)C9—C10—C11—C12−1.5 (5)
C2—C3—C4—C5−0.8 (5)C10—C11—C12—C130.7 (5)
C3—C4—C5—C60.8 (5)C11—C12—C13—C8−0.3 (5)
C4—C5—C6—C1−0.2 (4)C9—C8—C13—C120.6 (4)
C4—C5—C6—C7−179.8 (3)P1—C8—C13—C12−174.1 (2)
C2—C1—C6—C5−0.4 (4)C8—P1—C14—C19116.6 (2)
C2—C1—C6—C7179.3 (3)C7—P1—C14—C196.5 (3)
C5—C6—C7—P1−83.8 (3)Au1—P1—C14—C19−117.6 (2)
C1—C6—C7—P196.6 (3)C8—P1—C14—C15−64.5 (2)
C8—P1—C7—C660.1 (2)C7—P1—C14—C15−174.6 (2)
C14—P1—C7—C6170.15 (18)Au1—P1—C14—C1561.3 (2)
Au1—P1—C7—C6−68.1 (2)C19—C14—C15—C16−0.6 (5)
C14—P1—C8—C9147.9 (2)P1—C14—C15—C16−179.6 (2)
C7—P1—C8—C9−100.5 (2)C14—C15—C16—C170.1 (5)
Au1—P1—C8—C926.0 (2)C15—C16—C17—C180.7 (5)
C14—P1—C8—C13−37.4 (2)C16—C17—C18—C19−0.9 (5)
C7—P1—C8—C1374.2 (2)C15—C14—C19—C180.4 (4)
Au1—P1—C8—C13−159.25 (19)P1—C14—C19—C18179.2 (2)
C13—C8—C9—C10−1.4 (4)C17—C18—C19—C140.4 (5)
P1—C8—C9—C10173.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl1i0.972.713.675 (3)175

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2625).

References

  • Baenziger, N. C., Bennett, W. E. & Soborofe, D. M. (1976). Acta Cryst. B32, 962–963.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chiu, Y. C., Lin, C. H., Hung, J. Y., Chi, Y., Cheng, Y. M., Wang, K. W., Chung, M. W., Lee, G. H. & Chou, P. T. (2009). Inorg. Chem.48, 8164–8172. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Francis, C. P. (1901). J. Am. Chem. Soc.23, 250–258.
  • Parish, R. & Cottrill, S. M. (1987). Gold Bull.20, 3–12.
  • Shawkataly, O. bin, Tariq, A., Ghani, S. S., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1217–m1218. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol.42, 225–248. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography