PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3201.
Published online 2010 November 17. doi:  10.1107/S1600536810046246
PMCID: PMC3011515

(E)-1-[1-(4-Chloro­phen­yl)eth­yl]-3,5-dimethyl-N-nitro-1,3,5-triazinan-2-imine

Abstract

In the title compound, C13H18ClN5O2, the 1,3,5-triazinane ring exhibits an envelope conformation with an E form. The chloro­phenyl ring and the nitro group are each twisted with respect to the mean plane of the triazinane ring, making dihedral angles of 67.30 (9) and 83.54 (8)°, respectively. In the crystal, weak inter­molecular C—H(...)O hydrogen bonds build up a corrugated layer parallel to the (101) plane.

Related literature

The title compound was synthesized as a new compound with better insecticidal activity. For similar compounds with insecticidal properties, see: Koln et al. (2002 [triangle]). For related structures, see: Zhao et al. (2008 [triangle]); Hu et al. (2008 [triangle]); Xu et al. (2010 [triangle]) For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3201-scheme1.jpg

Experimental

Crystal data

  • C13H18ClN5O2
  • M r = 311.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3201-efi1.jpg
  • a = 7.2483 (14) Å
  • b = 29.568 (6) Å
  • c = 7.2306 (14) Å
  • β = 108.75 (3)°
  • V = 1467.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 113 K
  • 0.20 × 0.16 × 0.12 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.947, T max = 0.968
  • 9753 measured reflections
  • 2585 independent reflections
  • 2303 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.104
  • S = 1.08
  • 2585 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046246/dn2619sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046246/dn2619Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound was synthesized as a new compound with better insecticide activity. Lots of similar insecticide compounds with (I) were synthesized (Koln et al., 2002). We report here the crystal struture of (I).

The 1,3,5-triazinan ring exhibits envelope conformation with puckering parameters Q= 0.4777 (19)Å, θ= 57.8 (2)° and [var phi]= 238.5 (3)° (Cremer & Pople, 1975). The chlorophenyl ring as well as the nitro group are twisted with respect to the mean plane of the triazinan ring making dihedral angles of 67.30 (9)° and 83.54 (8)° respectively (Fig. 1). All bond lengths and angles are normal and in a good agreement with those recently reported (Hu et al., 2008; Zhao et al., 2008; Xu et al., 2010).

Weak intermolecular C–H···O hydrogen bonds build up a corrugated layer parallel to the (1 0 1) plane (Table 1).

Experimental

A mixture of 1,5-dimethyl-2-(nitromethylene)-1,3,5-triazinane (20.64 g, 0.12 mol), potassium carbonate (20.7 g, 0.15 mol), potassium iodization (2 g) and ethyl acetate (150 ml) was stirred and heated in a 500 ml flask. The mixture was slowly heated to 353 K - 363 K and kept for 1 h. Then ,1-chloro-4-(1-chloroethyl)benzene (21 g, 0.12 mol, dissolved in 100 ml of ethyl acetate) was added dropwise into the flask, and the mixture was futher stirred at 353 K - 363 K for 15 h. After cooling, the precipitate was filtered,washed with ethyl acetate and water, and recrystallized from ethyl acetate to obtain flaxen powder. Yield: 86%.

Refinement

All H atoms were placed in calculated positions, with C–H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl, methylene and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
View of the title compound (I) with the atoms labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C13H18ClN5O2F(000) = 656
Mr = 311.77Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3278 reflections
a = 7.2483 (14) Åθ = 1.4–27.9°
b = 29.568 (6) ŵ = 0.27 mm1
c = 7.2306 (14) ÅT = 113 K
β = 108.75 (3)°Needle, colourless
V = 1467.4 (5) Å30.20 × 0.16 × 0.12 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer2585 independent reflections
Radiation source: rotating anode2303 reflections with I > 2σ(I)
confocalRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω and [var phi] scansh = −8→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −35→34
Tmin = 0.947, Tmax = 0.968l = −8→8
9753 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0488P)2 + 0.7943P] where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.37472 (9)0.56523 (2)0.15716 (10)0.0546 (2)
O1−0.25418 (19)0.29503 (4)0.41241 (18)0.0236 (3)
O2−0.48276 (18)0.33395 (5)0.47562 (18)0.0254 (3)
N1−0.0516 (2)0.36893 (5)0.2166 (2)0.0173 (3)
N2−0.2858 (2)0.32380 (5)0.0044 (2)0.0175 (3)
N30.0492 (2)0.31375 (5)0.0208 (2)0.0181 (3)
N4−0.3580 (2)0.36095 (5)0.2595 (2)0.0197 (3)
N5−0.3641 (2)0.32910 (5)0.3838 (2)0.0181 (3)
C10.3035 (3)0.44147 (6)0.3422 (3)0.0261 (4)
H10.38130.41530.38530.031*
C20.3844 (3)0.47936 (7)0.2862 (3)0.0321 (5)
H20.51590.47890.28760.038*
C30.2725 (3)0.51775 (7)0.2283 (3)0.0323 (5)
C40.0823 (3)0.51896 (7)0.2250 (3)0.0326 (5)
H40.00710.54570.18710.039*
C50.0016 (3)0.48064 (6)0.2776 (3)0.0265 (4)
H5−0.13070.48130.27360.032*
C60.1093 (3)0.44127 (6)0.3362 (3)0.0206 (4)
C70.0118 (3)0.39993 (6)0.3875 (3)0.0200 (4)
H7−0.10810.41050.41430.024*
C80.1367 (3)0.37472 (6)0.5690 (3)0.0231 (4)
H8A0.25200.36220.54460.035*
H8B0.06050.35010.59910.035*
H8C0.17760.39570.67970.035*
C9−0.2273 (2)0.34984 (5)0.1609 (2)0.0166 (4)
C10−0.1503 (3)0.31248 (6)−0.1043 (3)0.0199 (4)
H10A−0.18080.2819−0.16160.024*
H10B−0.16830.3343−0.21270.024*
C110.0888 (3)0.35748 (6)0.1119 (3)0.0184 (4)
H11A0.08100.38070.01100.022*
H11B0.22290.35780.20560.022*
C120.0994 (3)0.27654 (6)0.1633 (3)0.0231 (4)
H12A0.07570.24750.09400.035*
H12B0.01880.27850.24890.035*
H12C0.23730.27870.24200.035*
C13−0.4771 (3)0.30192 (6)−0.0593 (3)0.0226 (4)
H13A−0.57010.3204−0.01930.034*
H13B−0.46720.27190.00070.034*
H13C−0.52220.2988−0.20180.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0535 (4)0.0359 (3)0.0547 (4)−0.0206 (3)−0.0102 (3)0.0202 (3)
O10.0254 (7)0.0221 (7)0.0255 (7)0.0071 (5)0.0111 (6)0.0057 (5)
O20.0188 (7)0.0410 (8)0.0203 (7)0.0038 (6)0.0120 (5)0.0028 (6)
N10.0174 (8)0.0186 (7)0.0171 (7)0.0002 (6)0.0071 (6)−0.0011 (6)
N20.0142 (7)0.0210 (8)0.0176 (7)0.0000 (6)0.0057 (6)0.0004 (6)
N30.0165 (8)0.0198 (8)0.0185 (7)−0.0008 (6)0.0062 (6)−0.0019 (6)
N40.0190 (8)0.0220 (8)0.0207 (8)0.0039 (6)0.0100 (6)0.0035 (6)
N50.0151 (7)0.0233 (8)0.0155 (7)0.0002 (6)0.0045 (6)−0.0007 (6)
C10.0241 (10)0.0198 (9)0.0300 (10)−0.0014 (7)0.0026 (8)0.0005 (8)
C20.0260 (11)0.0310 (11)0.0346 (11)−0.0077 (8)0.0033 (9)0.0021 (9)
C30.0390 (12)0.0229 (10)0.0254 (10)−0.0100 (9)−0.0032 (9)0.0030 (8)
C40.0439 (13)0.0204 (10)0.0262 (11)0.0063 (9)0.0012 (9)0.0000 (8)
C50.0286 (10)0.0269 (10)0.0223 (10)0.0049 (8)0.0059 (8)−0.0039 (8)
C60.0249 (10)0.0188 (9)0.0164 (9)−0.0012 (7)0.0044 (7)−0.0038 (7)
C70.0206 (9)0.0214 (9)0.0184 (9)0.0015 (7)0.0067 (7)−0.0046 (7)
C80.0247 (10)0.0262 (10)0.0189 (9)−0.0005 (8)0.0075 (8)−0.0005 (7)
C90.0175 (9)0.0155 (8)0.0165 (8)0.0039 (7)0.0052 (7)0.0038 (7)
C100.0196 (9)0.0253 (10)0.0159 (8)−0.0008 (7)0.0073 (7)−0.0021 (7)
C110.0175 (9)0.0204 (9)0.0195 (9)−0.0012 (7)0.0088 (7)−0.0010 (7)
C120.0223 (10)0.0215 (9)0.0250 (10)0.0027 (7)0.0070 (8)0.0004 (7)
C130.0146 (9)0.0290 (10)0.0232 (9)−0.0024 (7)0.0045 (7)−0.0022 (8)

Geometric parameters (Å, °)

Cl1—C31.740 (2)C4—C51.383 (3)
O1—N51.2595 (19)C4—H40.9500
O2—N51.2522 (19)C5—C61.390 (3)
N1—C91.332 (2)C5—H50.9500
N1—C71.488 (2)C6—C71.516 (3)
N1—C111.490 (2)C7—C81.527 (3)
N2—C91.321 (2)C7—H71.0000
N2—C131.464 (2)C8—H8A0.9800
N2—C101.480 (2)C8—H8B0.9800
N3—C111.437 (2)C8—H8C0.9800
N3—C101.439 (2)C10—H10A0.9900
N3—C121.471 (2)C10—H10B0.9900
N4—N51.312 (2)C11—H11A0.9900
N4—C91.395 (2)C11—H11B0.9900
C1—C21.384 (3)C12—H12A0.9800
C1—C61.394 (3)C12—H12B0.9800
C1—H10.9500C12—H12C0.9800
C2—C31.379 (3)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—C41.372 (3)C13—H13C0.9800
C9—N1—C7121.49 (14)C6—C7—H7107.3
C9—N1—C11119.58 (14)C8—C7—H7107.3
C7—N1—C11118.87 (13)C7—C8—H8A109.5
C9—N2—C13122.48 (15)C7—C8—H8B109.5
C9—N2—C10120.15 (14)H8A—C8—H8B109.5
C13—N2—C10117.16 (14)C7—C8—H8C109.5
C11—N3—C10108.91 (14)H8A—C8—H8C109.5
C11—N3—C12112.59 (14)H8B—C8—H8C109.5
C10—N3—C12113.18 (14)N2—C9—N1121.19 (15)
N5—N4—C9111.03 (14)N2—C9—N4119.45 (15)
O2—N5—O1120.71 (14)N1—C9—N4119.10 (15)
O2—N5—N4117.46 (14)N3—C10—N2111.35 (14)
O1—N5—N4121.83 (14)N3—C10—H10A109.4
C2—C1—C6120.84 (18)N2—C10—H10A109.4
C2—C1—H1119.6N3—C10—H10B109.4
C6—C1—H1119.6N2—C10—H10B109.4
C3—C2—C1119.5 (2)H10A—C10—H10B108.0
C3—C2—H2120.3N3—C11—N1111.63 (14)
C1—C2—H2120.3N3—C11—H11A109.3
C4—C3—C2121.07 (19)N1—C11—H11A109.3
C4—C3—Cl1119.65 (16)N3—C11—H11B109.3
C2—C3—Cl1119.28 (18)N1—C11—H11B109.3
C3—C4—C5119.04 (18)H11A—C11—H11B108.0
C3—C4—H4120.5N3—C12—H12A109.5
C5—C4—H4120.5N3—C12—H12B109.5
C4—C5—C6121.61 (19)H12A—C12—H12B109.5
C4—C5—H5119.2N3—C12—H12C109.5
C6—C5—H5119.2H12A—C12—H12C109.5
C5—C6—C1117.94 (17)H12B—C12—H12C109.5
C5—C6—C7119.32 (17)N2—C13—H13A109.5
C1—C6—C7122.73 (16)N2—C13—H13B109.5
N1—C7—C6109.73 (14)H13A—C13—H13B109.5
N1—C7—C8110.65 (14)N2—C13—H13C109.5
C6—C7—C8114.18 (15)H13A—C13—H13C109.5
N1—C7—H7107.3H13B—C13—H13C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.982.293.273 (2)178
C10—H10A···O1ii0.992.433.278 (2)143
C11—H11B···O2i0.992.493.434 (3)160

Symmetry codes: (i) x+1, y, z; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2619).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hu, Z.-Q., Yang, X.-D., An, G.-W., Yang, Z. & Xu, L.-Z. (2008). Acta Cryst. E64, o121. [PMC free article] [PubMed]
  • Koln, J. S., Wolfenbuttel, K. L., Dusseldorf, W. S., Bergisch Gladbach, A. H. & Koln, T. T. (2002). US Patent 0869120.
  • Rigaku (2004). RAPID-AUTO Rigaku Corporation, Takyo, Japan
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, L.-Z., Yin, R.-F. & Li, H.-X. (2010). Acta Cryst. E66, o867. [PMC free article] [PubMed]
  • Zhao, C., Yang, W., Hu, Y., Shen, L. & Lu, X. (2008). Acta Cryst. E64, o1515. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography