PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1615–m1616.
Published online 2010 November 20. doi:  10.1107/S1600536810047203
PMCID: PMC3011513

Poly[[tetra­aqua­(μ4-imidazole-4,5-dicarboxyl­ato)(μ3-imidazole-4,5-dicarboxyl­ato)-μ3-sulfato-μ2-sulfato-cobalt(II)dierbium(III)] monohydrate]

Abstract

The asymmetric unit of the title compound, {[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O}n, contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxyl­ate (imdc) ligands, two SO4 2− anions, four coordinated water mol­ecules and one uncoordinated water mol­ecule. The CoII ion is six-coordinated by two O atoms from two coordinated water mol­ecules and two O atoms and two N atoms from two imdc ligands in a slightly distorted octa­hedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal–prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxyl­ate ligands, three O atoms from three SO4 2− anions and one water O atom; the other ErIII ion is bonded to five O atoms from three imdc ligands, two O atoms from two SO4 2− anions as well as one coordinated water mol­ecule. The coordinated metal units are connected by bridging imdc ligands and sulfate ions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along the b axis via N—H(...)O, O—H(...)O and C—H(...)O hydrogen-bonding inter­actions between water mol­ecules, SO4 2− anions, and imdc ligands, generating a three-dimensional framework.

Related literature

For applications of lanthanide–transition metal complexes similar to the title compound, see: Cheng et al. (2006 [triangle]); Kuang et al. (2007 [triangle]). For related structures, see: Sun et al. (2006 [triangle]); Zhu et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1615-scheme1.jpg

Experimental

Crystal data

  • [CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2O
  • M r = 983.84
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1615-efi1.jpg
  • a = 9.0512 (5) Å
  • b = 10.6827 (6) Å
  • c = 12.8945 (8) Å
  • α = 92.955 (1)°
  • β = 97.054 (1)°
  • γ = 108.612 (1)°
  • V = 1167.17 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 8.12 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.215, T max = 0.296
  • 6026 measured reflections
  • 4123 independent reflections
  • 3820 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.055
  • S = 1.03
  • 4123 reflections
  • 397 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.87 e Å−3
  • Δρmin = −1.35 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047203/pv2354sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047203/pv2354Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, there has been a tremendous increase of interset in lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands because of their impressive topological structures as well aso due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains a CoII ion, two ErIII ions, two imidazole-4,5-dicarboxylate (imdc) ligands, two SO42- anions, four coordinated water molecules and one lattice water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imdc ligands, to give a slightly distorted octahedral geometry. Both ErIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One ErIII ion is coordinated by four O atoms from two idmc ligands, three O atoms from three SO42- anions and one water molecule; the other ErIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imdc ligands and sulfate anions, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via hydrogen-bonding interactions between water molecules, SO42- anions, and imdc ligands to generate the three-dimensional framework (Tab. 1 and Fig. 2).

Experimental

A mixture of CoSO4.7H2O (0.141 g, 0.5 mmol), Er2O3 (0.098 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with restraints: N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O). In the final difference map, the largest residual electron density and the deepest hole are located at 0.96 and 0.85 Å, respectively from Er2.

Figures

Fig. 1.
The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) -1 + x, y, z; (B) -x, -y, -z; (C) -1 + x, y, -1 + z; (D) -1 - x, -y, -z; (E) -x, -y, 1 - z.
Fig. 2.
A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines.

Crystal data

[CoEr2(C5H2N2O4)2(SO4)2(H2O)4]·H2OZ = 2
Mr = 983.84F(000) = 930
Triclinic, P1Dx = 2.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0512 (5) ÅCell parameters from 4400 reflections
b = 10.6827 (6) Åθ = 2.4–28.0°
c = 12.8945 (8) ŵ = 8.12 mm1
α = 92.955 (1)°T = 296 K
β = 97.054 (1)°Block, red
γ = 108.612 (1)°0.20 × 0.18 × 0.15 mm
V = 1167.17 (12) Å3

Data collection

Bruker APEXII area-detector diffractometer4123 independent reflections
Radiation source: fine-focus sealed tube3820 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scanθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→5
Tmin = 0.215, Tmax = 0.296k = −12→12
6026 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0283P)2 + 1.940P] where P = (Fo2 + 2Fc2)/3
4123 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.87 e Å3
12 restraintsΔρmin = −1.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Er1−0.09070 (2)0.049642 (19)0.366467 (14)0.01288 (7)
Er2−0.37193 (2)0.088827 (18)−0.105666 (14)0.01193 (7)
Co10.34879 (7)0.28628 (6)0.27282 (4)0.01585 (14)
S1−0.22681 (13)−0.07707 (11)0.09734 (8)0.0129 (2)
S2−0.07687 (14)−0.27513 (11)0.40191 (9)0.0170 (2)
C10.4802 (5)0.0827 (4)0.6454 (3)0.0145 (9)
C20.5054 (5)0.1537 (4)0.5507 (3)0.0152 (9)
C30.6350 (6)0.2989 (5)0.4510 (4)0.0212 (10)
H30.71750.36210.42710.025*
C40.4062 (5)0.1634 (4)0.4630 (3)0.0150 (9)
C50.2387 (5)0.1004 (4)0.4232 (3)0.0144 (9)
C60.5165 (5)0.1950 (4)0.1209 (3)0.0144 (9)
C70.5691 (6)0.3402 (5)0.1209 (4)0.0177 (10)
C80.5776 (6)0.5343 (5)0.1817 (4)0.0235 (11)
H80.56090.60280.22090.028*
C90.6679 (6)0.4298 (4)0.0658 (4)0.0196 (10)
C100.7520 (6)0.4192 (5)−0.0250 (4)0.0218 (11)
N10.6495 (5)0.2411 (4)0.5397 (3)0.0190 (9)
N20.4904 (5)0.2554 (4)0.4025 (3)0.0169 (8)
N30.5133 (5)0.4078 (4)0.1927 (3)0.0189 (9)
N40.6703 (5)0.5521 (4)0.1067 (3)0.0249 (9)
O1−0.2200 (4)0.0083 (3)0.0104 (2)0.0208 (7)
O2−0.3866 (4)−0.1266 (3)0.1256 (3)0.0224 (7)
O3−0.1750 (4)−0.1884 (3)0.0667 (3)0.0245 (8)
O4−0.1162 (4)0.0023 (3)0.1883 (2)0.0229 (8)
O5−0.1393 (4)−0.1746 (3)0.3560 (2)0.0218 (7)
O6−0.1995 (5)−0.4018 (4)0.3964 (3)0.0407 (10)
O7−0.0089 (4)−0.2307 (3)0.5147 (2)0.0235 (8)
O80.0526 (4)−0.2828 (4)0.3446 (3)0.0278 (8)
O90.1450 (4)0.0157 (3)0.4693 (2)0.0171 (7)
O100.1848 (4)0.1367 (3)0.3383 (2)0.0182 (7)
O110.3504 (4)−0.0057 (3)0.6478 (2)0.0183 (7)
O120.5935 (4)0.1177 (3)0.7192 (2)0.0235 (8)
O130.4190 (4)0.1442 (3)0.1823 (2)0.0178 (7)
O140.5640 (4)0.1192 (3)0.0648 (2)0.0164 (7)
O150.7324 (5)0.3048 (3)−0.0682 (3)0.0322 (9)
O160.8340 (5)0.5232 (3)−0.0549 (3)0.0367 (10)
H20.726 (7)0.631 (3)0.097 (5)0.055*
H10.739 (4)0.250 (6)0.576 (5)0.055*
O1W−0.1359 (4)0.1275 (4)−0.1711 (3)0.0261 (8)
H1W−0.120 (7)0.159 (6)−0.227 (3)0.039*
H2W−0.050 (4)0.140 (6)−0.135 (4)0.039*
O2W0.1566 (5)0.2533 (4)0.1512 (3)0.0285 (8)
H3W0.164 (8)0.320 (4)0.122 (4)0.043*
H4W0.121 (7)0.182 (3)0.118 (4)0.043*
O3W0.2893 (6)0.4288 (4)0.3606 (3)0.0376 (10)
H5W0.226 (7)0.456 (7)0.326 (5)0.056*
H6W0.290 (9)0.416 (7)0.422 (2)0.056*
O4W−0.1271 (5)0.2319 (4)0.2783 (3)0.0366 (10)
H7W−0.072 (7)0.310 (3)0.286 (5)0.055*
H8W−0.106 (8)0.223 (7)0.220 (3)0.055*
O5W0.0527 (6)0.4842 (4)0.2458 (3)0.0433 (11)
H9W0.044 (9)0.557 (4)0.269 (5)0.065*
H10W0.079 (9)0.499 (7)0.185 (3)0.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Er10.01014 (12)0.01703 (11)0.01108 (11)0.00352 (8)0.00105 (8)0.00507 (8)
Er20.01019 (12)0.01510 (11)0.01112 (11)0.00425 (8)0.00202 (8)0.00503 (8)
Co10.0167 (3)0.0187 (3)0.0132 (3)0.0060 (3)0.0037 (2)0.0058 (2)
S10.0105 (6)0.0177 (5)0.0113 (5)0.0056 (4)0.0012 (4)0.0046 (4)
S20.0165 (6)0.0160 (5)0.0170 (5)0.0042 (5)−0.0009 (5)0.0020 (4)
C10.014 (2)0.024 (2)0.010 (2)0.013 (2)0.0026 (18)0.0040 (18)
C20.009 (2)0.021 (2)0.015 (2)0.0033 (19)0.0025 (18)0.0037 (18)
C30.017 (3)0.025 (3)0.021 (2)0.003 (2)0.005 (2)0.010 (2)
C40.017 (3)0.021 (2)0.009 (2)0.007 (2)0.0039 (18)0.0029 (17)
C50.013 (2)0.021 (2)0.012 (2)0.0077 (19)0.0023 (18)0.0007 (18)
C60.010 (2)0.018 (2)0.013 (2)0.0030 (19)−0.0023 (18)0.0039 (18)
C70.015 (2)0.019 (2)0.018 (2)0.0043 (19)0.0024 (19)0.0044 (18)
C80.031 (3)0.018 (2)0.023 (2)0.007 (2)0.011 (2)0.0044 (19)
C90.020 (3)0.016 (2)0.021 (2)0.003 (2)0.004 (2)0.0038 (19)
C100.022 (3)0.019 (2)0.023 (2)0.003 (2)0.009 (2)0.006 (2)
N10.008 (2)0.026 (2)0.0180 (19)0.0005 (17)−0.0027 (16)0.0045 (17)
N20.014 (2)0.021 (2)0.0164 (19)0.0049 (16)0.0034 (16)0.0049 (16)
N30.023 (2)0.016 (2)0.0168 (19)0.0049 (17)0.0050 (17)0.0012 (15)
N40.030 (3)0.016 (2)0.027 (2)0.0035 (19)0.0112 (19)0.0055 (18)
O10.0156 (18)0.0305 (19)0.0197 (16)0.0097 (15)0.0039 (14)0.0155 (14)
O20.0127 (18)0.0340 (19)0.0241 (17)0.0097 (15)0.0060 (14)0.0164 (15)
O30.028 (2)0.0163 (17)0.0333 (19)0.0085 (15)0.0146 (16)0.0047 (14)
O40.0192 (19)0.0291 (19)0.0143 (16)0.0004 (15)−0.0006 (14)0.0032 (14)
O50.0226 (19)0.0201 (17)0.0219 (17)0.0079 (15)−0.0028 (14)0.0022 (14)
O60.030 (2)0.023 (2)0.054 (3)−0.0059 (17)−0.0115 (19)0.0110 (18)
O70.034 (2)0.0225 (18)0.0148 (16)0.0116 (16)0.0009 (15)0.0048 (13)
O80.026 (2)0.044 (2)0.0189 (17)0.0186 (17)0.0052 (15)0.0015 (15)
O90.0104 (16)0.0256 (18)0.0136 (15)0.0025 (14)0.0031 (13)0.0080 (13)
O100.0124 (17)0.0270 (18)0.0146 (15)0.0044 (14)0.0032 (13)0.0082 (13)
O110.0102 (17)0.0265 (18)0.0170 (16)0.0035 (14)0.0018 (13)0.0079 (13)
O120.0103 (17)0.038 (2)0.0179 (16)0.0024 (15)−0.0020 (14)0.0098 (15)
O130.0208 (18)0.0150 (16)0.0169 (15)0.0024 (14)0.0082 (14)0.0045 (13)
O140.0190 (18)0.0136 (15)0.0161 (15)0.0036 (13)0.0051 (13)0.0014 (12)
O150.041 (2)0.0173 (18)0.036 (2)0.0022 (16)0.0194 (18)0.0018 (15)
O160.050 (3)0.0216 (19)0.040 (2)0.0056 (18)0.026 (2)0.0105 (16)
O1W0.0148 (19)0.046 (2)0.0222 (18)0.0137 (17)0.0050 (15)0.0139 (17)
O2W0.032 (2)0.030 (2)0.0228 (19)0.0108 (19)−0.0028 (16)0.0054 (16)
O3W0.052 (3)0.035 (2)0.031 (2)0.024 (2)0.001 (2)0.0002 (18)
O4W0.047 (3)0.025 (2)0.033 (2)0.0063 (19)−0.001 (2)0.0113 (18)
O5W0.063 (3)0.035 (2)0.043 (2)0.025 (2)0.025 (2)0.009 (2)

Geometric parameters (Å, °)

Er1—O11i2.227 (3)C3—H30.9300
Er1—O7i2.268 (3)C4—N21.380 (6)
Er1—O52.286 (3)C4—C51.462 (6)
Er1—O42.294 (3)C5—O91.258 (5)
Er1—O9i2.324 (3)C5—O101.272 (5)
Er1—O4W2.396 (4)C6—O141.267 (5)
Er1—O102.447 (3)C6—O131.269 (5)
Er1—O92.508 (3)C6—C71.470 (6)
Er1—C52.848 (4)C6—Er2v2.879 (4)
Er2—O15ii2.198 (3)C7—C91.378 (7)
Er2—O12iii2.291 (3)C7—N31.383 (6)
Er2—O12.292 (3)C8—N31.313 (6)
Er2—O1W2.316 (4)C8—N41.338 (6)
Er2—O2iv2.333 (3)C8—H80.9300
Er2—O14ii2.373 (3)C9—N41.376 (6)
Er2—O14v2.474 (3)C9—C101.492 (7)
Er2—O13v2.514 (3)C10—O161.234 (6)
Er2—C6v2.879 (4)C10—O151.266 (6)
Er2—Er2iv3.9596 (4)N1—H10.86 (5)
Co1—N32.062 (4)N4—H20.86 (4)
Co1—N22.085 (4)O2—Er2iv2.333 (3)
Co1—O3W2.093 (4)O7—Er1i2.268 (3)
Co1—O102.099 (3)O9—Er1i2.324 (3)
Co1—O2W2.120 (4)O11—Er1i2.227 (3)
Co1—O132.165 (3)O12—Er2vi2.291 (3)
S1—O31.464 (3)O13—Er2v2.514 (3)
S1—O41.471 (3)O14—Er2vii2.373 (3)
S1—O21.471 (3)O14—Er2v2.474 (3)
S1—O11.477 (3)O15—Er2vii2.198 (3)
S2—O61.443 (4)O1W—H1W0.82 (5)
S2—O51.481 (3)O1W—H2W0.82 (5)
S2—O81.482 (4)O2W—H3W0.81 (4)
S2—O71.497 (3)O2W—H4W0.80 (4)
C1—O111.255 (6)O3W—H5W0.82 (7)
C1—O121.256 (5)O3W—H6W0.81 (3)
C1—C21.474 (6)O4W—H7W0.82 (4)
C2—N11.369 (6)O4W—H8W0.81 (5)
C2—C41.385 (6)O5W—H9W0.85 (5)
C3—N21.304 (6)O5W—H10W0.86 (5)
C3—N11.339 (6)
O11i—Er1—O7i103.78 (12)O2W—Co1—O1387.26 (13)
O11i—Er1—O587.24 (12)O3—S1—O4108.4 (2)
O7i—Er1—O5140.03 (11)O3—S1—O2110.1 (2)
O11i—Er1—O489.33 (12)O4—S1—O2109.7 (2)
O7i—Er1—O4137.77 (12)O3—S1—O1109.2 (2)
O5—Er1—O479.46 (12)O4—S1—O1107.83 (19)
O11i—Er1—O9i77.27 (11)O2—S1—O1111.55 (19)
O7i—Er1—O9i71.65 (11)O6—S2—O5111.1 (2)
O5—Er1—O9i73.70 (11)O6—S2—O8112.1 (2)
O4—Er1—O9i150.39 (11)O5—S2—O8107.4 (2)
O11i—Er1—O4W77.71 (14)O6—S2—O7108.6 (2)
O7i—Er1—O4W73.79 (12)O5—S2—O7109.60 (18)
O5—Er1—O4W145.94 (13)O8—S2—O7107.9 (2)
O4—Er1—O4W70.10 (13)O11—C1—O12124.8 (4)
O9i—Er1—O4W130.42 (13)O11—C1—C2119.4 (4)
O11i—Er1—O10162.82 (11)O12—C1—C2115.8 (4)
O7i—Er1—O1077.34 (12)N1—C2—C4104.3 (4)
O5—Er1—O10102.96 (12)N1—C2—C1121.7 (4)
O4—Er1—O1079.20 (11)C4—C2—C1133.7 (4)
O9i—Er1—O10118.64 (10)N2—C3—N1111.4 (4)
O4W—Er1—O1086.33 (13)N2—C3—H3124.3
O11i—Er1—O9145.10 (10)N1—C3—H3124.3
O7i—Er1—O975.86 (11)N2—C4—C2109.5 (4)
O5—Er1—O973.80 (11)N2—C4—C5115.7 (4)
O4—Er1—O9114.74 (11)C2—C4—C5134.8 (4)
O9i—Er1—O969.47 (12)O9—C5—O10118.6 (4)
O4W—Er1—O9132.82 (13)O9—C5—C4123.8 (4)
O10—Er1—O952.05 (10)O10—C5—C4117.6 (4)
O11i—Er1—C5169.83 (11)O9—C5—Er161.7 (2)
O7i—Er1—C571.00 (13)O10—C5—Er158.9 (2)
O5—Er1—C591.51 (12)C4—C5—Er1163.6 (3)
O4—Er1—C5100.37 (12)O14—C6—O13118.8 (4)
O9i—Er1—C592.68 (11)O14—C6—C7124.0 (4)
O4W—Er1—C5108.36 (14)O13—C6—C7117.2 (4)
O10—Er1—C526.44 (11)O14—C6—Er2v58.8 (2)
O9—Er1—C526.19 (11)O13—C6—Er2v60.7 (2)
O15ii—Er2—O12iii89.96 (13)C7—C6—Er2v172.0 (3)
O15ii—Er2—O1102.94 (13)C9—C7—N3109.4 (4)
O12iii—Er2—O1139.27 (12)C9—C7—C6134.6 (4)
O15ii—Er2—O1W79.51 (14)N3—C7—C6116.0 (4)
O12iii—Er2—O1W69.98 (12)N3—C8—N4111.3 (4)
O1—Er2—O1W74.63 (12)N3—C8—H8124.3
O15ii—Er2—O2iv85.40 (13)N4—C8—H8124.3
O12iii—Er2—O2iv78.38 (12)N4—C9—C7104.8 (4)
O1—Er2—O2iv140.26 (11)N4—C9—C10120.1 (4)
O1W—Er2—O2iv144.73 (11)C7—C9—C10134.9 (4)
O15ii—Er2—O14ii77.81 (12)O16—C10—O15124.0 (5)
O12iii—Er2—O14ii149.10 (12)O16—C10—C9117.7 (4)
O1—Er2—O14ii71.57 (11)O15—C10—C9118.3 (4)
O1W—Er2—O14ii133.35 (12)C3—N1—C2108.8 (4)
O2iv—Er2—O14ii72.50 (11)C3—N1—H1123 (5)
O15ii—Er2—O14v146.41 (12)C2—N1—H1127 (5)
O12iii—Er2—O14v111.88 (11)C3—N2—C4106.0 (4)
O1—Er2—O14v77.45 (11)C3—N2—Co1141.3 (3)
O1W—Er2—O14v131.03 (12)C4—N2—Co1112.6 (3)
O2iv—Er2—O14v75.04 (11)C8—N3—C7106.0 (4)
O14ii—Er2—O14v70.43 (11)C8—N3—Co1139.7 (3)
O15ii—Er2—O13v161.49 (12)C7—N3—Co1114.1 (3)
O12iii—Er2—O13v80.41 (11)C8—N4—C9108.5 (4)
O1—Er2—O13v75.46 (11)C8—N4—H2120 (4)
O1W—Er2—O13v82.34 (12)C9—N4—H2131 (4)
O2iv—Er2—O13v107.80 (11)S1—O1—Er2143.0 (2)
O14ii—Er2—O13v118.04 (10)S1—O2—Er2iv142.13 (19)
O14v—Er2—O13v51.89 (10)S1—O4—Er1142.7 (2)
O15ii—Er2—C6v171.02 (13)S2—O5—Er1141.0 (2)
O12iii—Er2—C6v98.50 (12)S2—O7—Er1i143.41 (19)
O1—Er2—C6v72.49 (12)C5—O9—Er1i143.6 (3)
O1W—Er2—C6v106.14 (13)C5—O9—Er192.2 (3)
O2iv—Er2—C6v93.33 (12)Er1i—O9—Er1110.53 (12)
O14ii—Er2—C6v93.33 (11)C5—O10—Co1115.3 (3)
O14v—Er2—C6v26.00 (11)C5—O10—Er194.6 (3)
O13v—Er2—C6v26.10 (11)Co1—O10—Er1144.42 (15)
O15ii—Er2—Er2iv113.19 (9)C1—O11—Er1i144.9 (3)
O12iii—Er2—Er2iv138.32 (8)C1—O12—Er2vi136.0 (3)
O1—Er2—Er2iv71.02 (8)C6—O13—Co1114.4 (3)
O1W—Er2—Er2iv145.23 (8)C6—O13—Er2v93.2 (3)
O2iv—Er2—Er2iv70.03 (8)Co1—O13—Er2v150.77 (15)
O14ii—Er2—Er2iv36.06 (7)C6—O14—Er2vii141.8 (3)
O14v—Er2—Er2iv34.37 (7)C6—O14—Er2v95.2 (3)
O13v—Er2—Er2iv84.04 (7)Er2vii—O14—Er2v109.57 (11)
C6v—Er2—Er2iv58.22 (9)C10—O15—Er2vii158.3 (3)
N3—Co1—N2102.00 (15)Er2—O1W—H1W123 (4)
N3—Co1—O3W100.19 (16)Er2—O1W—H2W125 (4)
N2—Co1—O3W92.08 (15)H1W—O1W—H2W108 (6)
N3—Co1—O10170.48 (14)Co1—O2W—H3W111 (5)
N2—Co1—O1078.70 (13)Co1—O2W—H4W119 (5)
O3W—Co1—O1089.25 (16)H3W—O2W—H4W119 (6)
N3—Co1—O2W95.07 (15)Co1—O3W—H5W112 (5)
N2—Co1—O2W160.56 (15)Co1—O3W—H6W113 (5)
O3W—Co1—O2W94.00 (16)H5W—O3W—H6W126 (7)
O10—Co1—O2W82.93 (14)Er1—O4W—H7W130 (5)
N3—Co1—O1377.96 (13)Er1—O4W—H8W107 (5)
N2—Co1—O1387.28 (14)H7W—O4W—H8W91 (7)
O3W—Co1—O13177.87 (16)H9W—O5W—H10W104 (7)
O10—Co1—O1392.62 (12)

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z; (iii) x−1, y, z−1; (iv) −x−1, −y, −z; (v) −x, −y, −z; (vi) x+1, y, z+1; (vii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O8viii0.86 (5)1.95 (5)2.806 (6)176 (7)
O1W—H1W···O8ix0.82 (5)2.08 (5)2.885 (6)166 (5)
N4—H2···O3x0.86 (4)1.93 (3)2.785 (5)172 (7)
O1W—H2W···O3ix0.82 (5)2.01 (4)2.822 (5)170 (4)
O1W—H2W···O4ix0.82 (5)2.58 (5)3.048 (5)118 (5)
O2W—H3W···O16xi0.81 (4)1.92 (5)2.730 (5)176 (8)
O2W—H4W···O3ix0.80 (4)2.49 (5)2.897 (5)113 (4)
O3W—H5W···O5W0.82 (7)1.89 (7)2.692 (7)169 (7)
O3W—H6W···O6i0.81 (3)2.57 (4)3.336 (6)158 (8)
O4W—H7W···O5W0.82 (4)1.98 (4)2.752 (6)158 (6)
O4W—H8W···O2W0.81 (5)2.57 (7)3.167 (6)132 (6)
O5W—H9W···O8xii0.85 (5)1.90 (5)2.737 (6)169 (5)
O5W—H10W···O16xi0.86 (5)1.97 (6)2.787 (6)159 (7)
C3—H3···O6x0.932.463.224 (7)140

Symmetry codes: (viii) −x+1, −y, −z+1; (ix) −x, −y, −z; (x) x+1, y+1, z; (xi) −x+1, −y+1, −z; (i) −x, −y, −z+1; (xii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2354).

References

  • Bruker (2004). APEX2 and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed.45, 73–77. [PubMed]
  • Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702. [PubMed]
  • Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun.13, 1299–1303.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography