PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3072.
Published online 2010 November 6. doi:  10.1107/S1600536810044405
PMCID: PMC3011497

2,5-Bis(4-meth­oxy­phen­yl)-1,3,4-oxadiazole

Abstract

In the title compound, C16H14N2O3, the essentially planar 1,3,4-oxadiazole ring [maximum deviation = 0.0021 (11) Å] is inclined at dihedral angles of 8.06 (6) and 11.21 (6)° with respect to the two benzene rings; the dihedral angle between the latter rings is 11.66 (5)°. In the crystal, short inter­molecular C(...)O inter­actions [2.9968 (15) Å] connect adjacent mol­ecules into chains propagating in [203]. The crystal structure is further stabilized by weak inter­molecular C—H(...)π inter­actions.

Related literature

For general background to and applications of the title compound, see: Andersen et al. (1994 [triangle]); Clitherow et al. (1996 [triangle]); Hegde et al. (2008 [triangle]); Rai et al. (2008 [triangle]); Showell et al. (1991 [triangle]). For closely related 2,5-diphenyl-1,3,4-oxadiazole structures, see: Reck et al. (2003a [triangle],b [triangle]); Franco et al. (2003 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3072-scheme1.jpg

Experimental

Crystal data

  • C16H14N2O3
  • M r = 282.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3072-efi1.jpg
  • a = 10.7525 (2) Å
  • b = 11.8973 (2) Å
  • c = 11.6340 (2) Å
  • β = 115.434 (1)°
  • V = 1344.04 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.53 × 0.49 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.950, T max = 0.992
  • 17061 measured reflections
  • 4744 independent reflections
  • 3744 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.137
  • S = 1.03
  • 4744 reflections
  • 246 parameters
  • All H-atom parameters refined
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044405/hb5714sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044405/hb5714Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Rai et al., 2008). Nitrogen- and oxygen-containing five/six-membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Hegde et al., 2008). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994) and anti-cancer (Showell et al., 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess significant anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

In the title oxadiazole compound (Fig. 1), the 1,3,4-oxadiazole ring (C7/C8/N1/N2/O1) is essentially planar, with a maximum deviation of -0.0021 (11) at atom N1. The C1-C6 and C9-C14 phenyl rings are inclined at dihedral angles of 11.21 (6) and 8.06 (6)°, respectively, with the 1,3,4-oxadiazole ring. The geometric parameters agree well with those observed in closely related 2,5-diphenyl-1,3,4-oxadiazole structures (Reck et al., 2003a,b; Franco et al., 2003).

In the crystal, no significant intermolecular hydrogen bond is observed. The interesting feature of the crystal structure is the intermolecular short C15···O3 interactions [2.9968 (15) Å, symmetry code: x+1, -y+1/2, z+3/2], which is significantly shorter than the sum of the Van der Waals radii of the relevant atoms (3.22 Å), interconnecting adjacent molecules into one-dimensional chains propagating along the [203] direction (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C15—H15A···Cg1 and C15—H15B···Cg2 interactions (Table 1) where Cg1 and Cg2 are the centroids of C9-C14 and C1-C6 phenyl rings, respectively.

Experimental

An equimolar mixture of 4-methoxybenzoic acid (0.01 mol) and 4-methoxybenzhydrazide was dissolved in POCl3 (25–30 ml) by gentle warming. The solution is refluxed for about 12 h. Excess of POCl3 is distilled off, and then the reaction mixture is poured into crushed ice. The separated solid was filtered, washed with water and dried. It was then recrystallized from ethanol. Yellow blocks of (I) were obtained from ethanol by slow evaporation.

Refinement

All H atoms were located from difference Fourier map and allowed to refine freely with range of C—H = 0.916 (14) – 1.031 (14) Å.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50 % probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal structure of the title compound, viewed along the a axis, showing molecules being interconnected into one-dimensional chains. H atoms have been omitted for clarity and intermolecular short interactions are shown as dashed lines.

Crystal data

C16H14N2O3F(000) = 592
Mr = 282.29Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5014 reflections
a = 10.7525 (2) Åθ = 2.6–32.2°
b = 11.8973 (2) ŵ = 0.10 mm1
c = 11.6340 (2) ÅT = 100 K
β = 115.434 (1)°Block, yellow
V = 1344.04 (4) Å30.53 × 0.49 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer4744 independent reflections
Radiation source: fine-focus sealed tube3744 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 32.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −16→15
Tmin = 0.950, Tmax = 0.992k = −17→17
17061 measured reflectionsl = −14→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137All H-atom parameters refined
S = 1.03w = 1/[σ2(Fo2) + (0.079P)2 + 0.1649P] where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.89032 (6)0.25303 (6)0.21170 (6)0.01974 (15)
O20.49848 (8)0.12006 (7)−0.35883 (8)0.0333 (2)
O31.26608 (8)0.16634 (6)0.80451 (7)0.02542 (17)
N10.84586 (9)0.42831 (7)0.14199 (9)0.02542 (19)
N20.93713 (9)0.43051 (7)0.27255 (8)0.02513 (19)
C10.64742 (10)0.33907 (9)−0.11316 (10)0.0243 (2)
C20.56651 (10)0.29145 (9)−0.23102 (10)0.0257 (2)
C30.57391 (10)0.17639 (9)−0.24904 (10)0.0247 (2)
C40.66395 (10)0.10958 (9)−0.14829 (10)0.0264 (2)
C50.74483 (10)0.15763 (8)−0.03171 (10)0.0234 (2)
C60.73715 (9)0.27300 (8)−0.01231 (9)0.02039 (18)
C70.82192 (9)0.32333 (8)0.11073 (9)0.02031 (18)
C80.95953 (9)0.32608 (7)0.30883 (9)0.01932 (18)
C91.04150 (9)0.28123 (7)0.43534 (9)0.01863 (17)
C101.06169 (9)0.16598 (8)0.45607 (9)0.01989 (18)
C111.13636 (9)0.12351 (8)0.57833 (9)0.02060 (18)
C121.19097 (9)0.19768 (8)0.68094 (9)0.01974 (18)
C131.17027 (10)0.31372 (8)0.66105 (10)0.0232 (2)
C141.09745 (10)0.35469 (8)0.53959 (10)0.02276 (19)
C150.42071 (11)0.18563 (12)−0.47047 (11)0.0320 (2)
C161.29532 (13)0.05018 (10)0.82938 (11)0.0312 (2)
H1A0.6395 (13)0.4157 (12)−0.1004 (13)0.031 (3)*
H2A0.5040 (16)0.3408 (13)−0.2994 (15)0.044 (4)*
H4A0.6699 (14)0.0323 (13)−0.1637 (14)0.034 (4)*
H5A0.8051 (14)0.1104 (12)0.0334 (13)0.033 (4)*
H10A1.0288 (13)0.1131 (11)0.3879 (13)0.028 (3)*
H11A1.1508 (14)0.0475 (12)0.5874 (14)0.033 (3)*
H13A1.2011 (15)0.3619 (13)0.7306 (14)0.039 (4)*
H14A1.0822 (13)0.4342 (12)0.5266 (13)0.031 (3)*
H15A0.3446 (14)0.2322 (11)−0.4612 (13)0.031 (3)*
H15B0.4821 (14)0.2357 (12)−0.4910 (14)0.030 (3)*
H15C0.3802 (16)0.1299 (14)−0.5399 (15)0.043 (4)*
H16A1.2087 (16)0.0060 (13)0.8025 (15)0.044 (4)*
H16B1.3518 (15)0.0229 (13)0.7875 (14)0.040 (4)*
H16C1.3490 (16)0.0457 (14)0.9238 (16)0.046 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0201 (3)0.0161 (3)0.0210 (3)0.0006 (2)0.0069 (2)0.0022 (2)
O20.0298 (4)0.0347 (4)0.0238 (4)−0.0009 (3)0.0003 (3)0.0011 (3)
O30.0325 (4)0.0234 (4)0.0183 (3)0.0021 (3)0.0089 (3)0.0011 (3)
N10.0316 (4)0.0193 (4)0.0244 (4)0.0024 (3)0.0112 (3)0.0035 (3)
N20.0324 (4)0.0184 (4)0.0236 (4)0.0022 (3)0.0111 (3)0.0020 (3)
C10.0247 (4)0.0219 (5)0.0262 (5)0.0025 (3)0.0108 (4)0.0062 (4)
C20.0220 (4)0.0283 (5)0.0246 (5)0.0024 (3)0.0080 (4)0.0086 (4)
C30.0197 (4)0.0282 (5)0.0224 (4)−0.0015 (3)0.0054 (3)0.0031 (4)
C40.0243 (4)0.0222 (5)0.0265 (5)0.0002 (3)0.0050 (4)0.0023 (4)
C50.0210 (4)0.0217 (4)0.0237 (4)0.0009 (3)0.0058 (3)0.0050 (3)
C60.0183 (4)0.0213 (4)0.0219 (4)0.0005 (3)0.0090 (3)0.0045 (3)
C70.0204 (4)0.0192 (4)0.0223 (4)0.0031 (3)0.0101 (3)0.0054 (3)
C80.0210 (4)0.0165 (4)0.0217 (4)0.0007 (3)0.0103 (3)−0.0001 (3)
C90.0192 (4)0.0161 (4)0.0213 (4)0.0001 (3)0.0092 (3)−0.0003 (3)
C100.0201 (4)0.0161 (4)0.0220 (4)−0.0010 (3)0.0076 (3)−0.0020 (3)
C110.0222 (4)0.0156 (4)0.0228 (4)−0.0009 (3)0.0086 (3)−0.0005 (3)
C120.0212 (4)0.0206 (4)0.0185 (4)0.0006 (3)0.0096 (3)0.0004 (3)
C130.0284 (4)0.0195 (4)0.0223 (4)0.0010 (3)0.0113 (4)−0.0039 (3)
C140.0275 (4)0.0163 (4)0.0246 (4)0.0017 (3)0.0112 (4)−0.0015 (3)
C150.0237 (4)0.0470 (7)0.0213 (5)0.0004 (4)0.0059 (4)0.0067 (4)
C160.0390 (6)0.0239 (5)0.0242 (5)0.0018 (4)0.0074 (4)0.0053 (4)

Geometric parameters (Å, °)

O1—C81.3652 (11)C6—C71.4552 (13)
O1—C71.3704 (11)C8—C91.4537 (13)
O2—C31.3597 (13)C9—C101.3930 (12)
O2—C151.4359 (13)C9—C141.4036 (13)
O3—C121.3641 (11)C10—C111.3937 (13)
O3—C161.4193 (13)C10—H10A0.954 (14)
N1—C71.2954 (13)C11—C121.3952 (13)
N1—N21.4110 (12)C11—H11A0.916 (14)
N2—C81.3010 (12)C12—C131.4017 (14)
C1—C21.3905 (15)C13—C141.3774 (14)
C1—C61.3975 (13)C13—H13A0.929 (16)
C1—H1A0.934 (14)C14—H14A0.960 (14)
C2—C31.3923 (15)C15—H15A1.031 (14)
C2—H2A0.985 (16)C15—H15B0.992 (14)
C3—C41.4029 (14)C15—H15C0.990 (16)
C4—C51.3819 (14)C16—H16A0.996 (16)
C4—H4A0.944 (15)C16—H16B0.982 (16)
C5—C61.3992 (14)C16—H16C0.999 (17)
C5—H5A0.943 (14)
C8—O1—C7102.83 (7)C10—C9—C8121.21 (8)
C3—O2—C15117.56 (9)C14—C9—C8119.66 (8)
C12—O3—C16117.39 (8)C9—C10—C11120.82 (8)
C7—N1—N2106.41 (8)C9—C10—H10A122.1 (8)
C8—N2—N1106.13 (8)C11—C10—H10A117.1 (8)
C2—C1—C6120.85 (9)C10—C11—C12119.35 (9)
C2—C1—H1A119.5 (9)C10—C11—H11A118.0 (9)
C6—C1—H1A119.6 (9)C12—C11—H11A122.5 (9)
C1—C2—C3119.80 (9)O3—C12—C11124.75 (9)
C1—C2—H2A118.4 (9)O3—C12—C13115.05 (8)
C3—C2—H2A121.8 (9)C11—C12—C13120.20 (9)
O2—C3—C2125.20 (9)C14—C13—C12119.87 (9)
O2—C3—C4115.14 (9)C14—C13—H13A120.6 (10)
C2—C3—C4119.66 (9)C12—C13—H13A119.5 (10)
C5—C4—C3120.21 (10)C13—C14—C9120.66 (9)
C5—C4—H4A121.6 (9)C13—C14—H14A119.5 (8)
C3—C4—H4A118.2 (9)C9—C14—H14A119.8 (8)
C4—C5—C6120.55 (9)O2—C15—H15A112.1 (8)
C4—C5—H5A117.9 (9)O2—C15—H15B110.8 (8)
C6—C5—H5A121.6 (9)H15A—C15—H15B110.0 (11)
C1—C6—C5118.92 (9)O2—C15—H15C104.8 (10)
C1—C6—C7120.62 (9)H15A—C15—H15C110.8 (12)
C5—C6—C7120.46 (8)H15B—C15—H15C108.1 (12)
N1—C7—O1112.27 (9)O3—C16—H16A110.8 (9)
N1—C7—C6129.63 (9)O3—C16—H16B110.5 (9)
O1—C7—C6118.09 (8)H16A—C16—H16B111.3 (13)
N2—C8—O1112.35 (8)O3—C16—H16C104.4 (10)
N2—C8—C9128.77 (9)H16A—C16—H16C109.8 (13)
O1—C8—C9118.84 (8)H16B—C16—H16C109.8 (13)
C10—C9—C14119.09 (9)
C7—N1—N2—C8−0.41 (11)N1—N2—C8—O10.33 (11)
C6—C1—C2—C30.44 (16)N1—N2—C8—C9−177.28 (9)
C15—O2—C3—C29.99 (16)C7—O1—C8—N2−0.13 (10)
C15—O2—C3—C4−170.60 (10)C7—O1—C8—C9177.74 (8)
C1—C2—C3—O2178.82 (10)N2—C8—C9—C10−175.90 (10)
C1—C2—C3—C4−0.55 (16)O1—C8—C9—C106.62 (13)
O2—C3—C4—C5−179.38 (10)N2—C8—C9—C146.42 (16)
C2—C3—C4—C50.05 (16)O1—C8—C9—C14−171.05 (8)
C3—C4—C5—C60.57 (16)C14—C9—C10—C11−0.04 (14)
C2—C1—C6—C50.18 (15)C8—C9—C10—C11−177.72 (9)
C2—C1—C6—C7179.80 (9)C9—C10—C11—C120.20 (14)
C4—C5—C6—C1−0.69 (15)C16—O3—C12—C112.71 (14)
C4—C5—C6—C7179.69 (9)C16—O3—C12—C13−177.29 (9)
N2—N1—C7—O10.35 (11)C10—C11—C12—O3−179.73 (8)
N2—N1—C7—C6−178.82 (9)C10—C11—C12—C130.27 (14)
C8—O1—C7—N1−0.15 (10)O3—C12—C13—C14179.08 (9)
C8—O1—C7—C6179.12 (8)C11—C12—C13—C14−0.92 (15)
C1—C6—C7—N1−11.61 (16)C12—C13—C14—C91.10 (15)
C5—C6—C7—N1168.01 (10)C10—C9—C14—C13−0.62 (14)
C1—C6—C7—O1169.27 (9)C8—C9—C14—C13177.10 (9)
C5—C6—C7—O1−11.12 (13)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C9–C14 and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i1.031 (14)2.563 (16)3.4903 (14)149.4 (10)
C15—H15B···Cg2ii0.992 (14)2.994 (16)3.8804 (14)149.4 (11)

Symmetry codes: (i) x−1, y, z−1; (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5714).

References

  • Andersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). Eur. J. Med. Chem.29, 393–399.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett.6, 833–838.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Franco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct.649, 219–230.
  • Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem.43, 2831–2834. [PubMed]
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [PubMed]
  • Reck, G., Orgzall, I. & Schulz, B. (2003a). Acta Cryst. E59, o1135–o1136.
  • Reck, G., Orgzall, I., Schulz, B. & Dietzel, B. (2003b). Acta Cryst. C59, o634–o635. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Suanders, J., Freedman, S. B., Patel, S. B. & Baker, R. (1991). J. Med. Chem.34, 1086–1094. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography