PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3086.
Published online 2010 November 6. doi:  10.1107/S1600536810044843
PMCID: PMC3011494

4-Amino­pyridinium azide 4-amino­pyridine solvate

Abstract

In the title compound, C5H7N2 +·N3 ·C5H6N2, all N atoms of the azide anion are situated on a twofold rotational axis, so the 4-amino­pyridinium cation and 4-amino­pyridine mol­ecule, being related by symmetry, occupy one position in the asymmetric unit. Inter­molecular N—H(...)N hydrogen bonds generate a three-dimensional hydrogen-bonding network which consolidates the crystal packing.

Related literature

For a related compound, see: Teulon et al. (1985 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3086-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·N3 ·C5H6N2
  • M r = 231.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3086-efi1.jpg
  • a = 7.507 (3) Å
  • b = 12.247 (5) Å
  • c = 13.634 (5) Å
  • β = 99.278 (5)°
  • V = 1237.0 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 291 K
  • 0.14 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.988, T max = 0.992
  • 3027 measured reflections
  • 1096 independent reflections
  • 852 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.105
  • S = 1.08
  • 1096 reflections
  • 80 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044843/cv2787sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044843/cv2787Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

WH acknowledges the National Natural Science Foundation of China (grant No. 20871065) and the Jiangsu Province Department of Science and Technology (grant No. BK2009226) for financial support.

supplementary crystallographic information

Comment

The crystal structure of 4-aminopyridine hemiperchlorate, has been previously reported (Teulon et al., 1985). In this paper, we report the X-ray single-crystal structure of 4-aminopyridinium azide 4-aminopyridine (I).

The molecular structure of (I) is illustrated in Fig. 1. All N atoms of the azide anions are situated on a twofold rotational axis, so 4-aminopyridinium cation and 4-aminopyridine molecule being related by symmetry occupy one position in the asymmetric unit. Intermolecular N—H···N hydrogen bonds (Table 1) generate a three-dimensional hydrogen-bonding network which consolidate the crystal packing.

Experimental

The title compound (I) was prepared by the treatment of 4-aminopyridine (0.5 mmol, 0.041 g) and excess sodium azide (NaN3) in 20 ml methanol with a few drops of acetate acid (HOAc). Colourless single crystals suitable for X-ray diffraction measurement were grown from its methanol solution after five days' slow evaporation at room temperature in air. Anal. Calcd. for C10H13N7: C, 51.94; H, 5.66; N, 42.40%. Found: C, 51.85; H, 5.81; N, 42.29%. FT–IR (KBr pellets, cm-1): 3447 (vs), 2057 (s), 1645 (s), 1463 (m), 1202 (w), 1202 (w), 840 (w), and 590 (w).

Refinement

One restraint (DELU 0.001 C1 C2) was used to reduce the components of the anisotropic displacement parameters along chemical C—C bond. The H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.93 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C5H7N2+·N3·C5H6N2F(000) = 488
Mr = 231.27Dx = 1.242 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1359 reflections
a = 7.507 (3) Åθ = 3.0–25.4°
b = 12.247 (5) ŵ = 0.08 mm1
c = 13.634 (5) ÅT = 291 K
β = 99.278 (5)°Block, colourless
V = 1237.0 (8) Å30.14 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer1096 independent reflections
Radiation source: fine-focus sealed tube852 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→8
Tmin = 0.988, Tmax = 0.992k = −12→14
3027 measured reflectionsl = −16→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.105w = 1/[σ2(Fo2) + (0.0493P)2 + 0.0478P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1096 reflectionsΔρmax = 0.11 e Å3
80 parametersΔρmin = −0.11 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (5)

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.1721 (2)0.05406 (12)−0.09812 (12)0.0879 (5)
H10.23210.0033−0.13160.106*
C20.22248 (18)0.06466 (10)0.00146 (11)0.0780 (4)
H20.31450.02140.03500.094*
C30.13523 (16)0.14103 (10)0.05345 (9)0.0699 (4)
C4−0.00162 (18)0.20282 (11)−0.00180 (11)0.0791 (4)
H4−0.06350.25470.02940.095*
C5−0.0439 (2)0.18672 (13)−0.10131 (12)0.0932 (5)
H5−0.13550.2286−0.13710.112*
N10.18164 (16)0.15416 (9)0.15211 (9)0.0858 (4)
H1A0.12650.20160.18280.103*
H1B0.26650.11510.18460.103*
N20.04055 (19)0.11306 (11)−0.15027 (9)0.0948 (4)
H2A0.01080.1042−0.21340.114*0.50
N30.5000−0.02503 (17)0.75000.1009 (6)
N40.50000.07152 (17)0.75000.0760 (5)
N50.50000.16656 (17)0.75000.1062 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0948 (10)0.0867 (9)0.0891 (8)−0.0181 (8)0.0353 (8)−0.0118 (8)
C20.0744 (8)0.0752 (8)0.0879 (8)−0.0108 (6)0.0231 (6)−0.0057 (6)
C30.0681 (7)0.0682 (7)0.0762 (9)−0.0163 (6)0.0206 (6)−0.0037 (6)
C40.0765 (8)0.0799 (8)0.0834 (9)−0.0071 (6)0.0205 (7)−0.0009 (7)
C50.0938 (10)0.1000 (11)0.0854 (11)−0.0100 (8)0.0132 (8)0.0090 (8)
N10.0900 (8)0.0873 (8)0.0803 (8)0.0016 (5)0.0144 (6)−0.0086 (6)
N20.1105 (10)0.1050 (9)0.0714 (8)−0.0251 (7)0.0223 (7)−0.0032 (7)
N30.0964 (13)0.0868 (12)0.1185 (15)0.0000.0141 (10)0.000
N40.0626 (9)0.0993 (13)0.0671 (9)0.0000.0139 (6)0.000
N50.1123 (14)0.0918 (14)0.1242 (16)0.0000.0488 (12)0.000

Geometric parameters (Å, °)

C1—N21.333 (2)C4—H40.9300
C1—C21.356 (2)C5—N21.341 (2)
C1—H10.9300C5—H50.9300
C2—C31.3985 (18)N1—H1A0.8600
C2—H20.9300N1—H1B0.8600
C3—N11.3437 (17)N2—H2A0.8600
C3—C41.395 (2)N3—N41.182 (3)
C4—C51.357 (2)N4—N51.164 (2)
N2—C1—C2123.06 (14)C3—C4—H4120.2
N2—C1—H1118.5N2—C5—C4122.83 (15)
C2—C1—H1118.5N2—C5—H5118.6
C1—C2—C3119.58 (14)C4—C5—H5118.6
C1—C2—H2120.2C3—N1—H1A120.0
C3—C2—H2120.2C3—N1—H1B120.0
N1—C3—C4121.68 (12)H1A—N1—H1B120.0
N1—C3—C2121.36 (13)C1—N2—C5117.93 (13)
C4—C3—C2116.97 (13)C1—N2—H2A121.0
C5—C4—C3119.63 (14)C5—N2—H2A121.0
C5—C4—H4120.2N5—N4—N3180.000 (1)
N2—C1—C2—C3−0.5 (2)C2—C3—C4—C50.10 (18)
C1—C2—C3—N1−179.81 (11)C3—C4—C5—N20.0 (2)
C1—C2—C3—C40.11 (17)C2—C1—N2—C50.6 (2)
N1—C3—C4—C5−179.98 (11)C4—C5—N2—C1−0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.862.153.008 (2)174
N1—H1B···N3ii0.862.142.9942 (18)172
N2—H2A···N2iii0.861.842.689 (3)169

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y, −z+1; (iii) −x, y, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2787).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teulon, P., Delaplane, R. G., Olovsson, I. & Rozière, J. (1985). Acta Cryst. C41, 479–483.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography