PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3328.
Published online 2010 November 27. doi:  10.1107/S1600536810048993
PMCID: PMC3011479

5,5′-(Butane-1,4-di­yl)bis­(1H-tetra­zole) dihydrate

Abstract

The title compound, C6H10N8·2H2O, was prepared by the reaction of hexanedinitrile and sodium azide. The di-1H-tetra­zole mol­ecule lies on a crystallographic centre of inversion and is linked to the water mol­ecules by N—H(...)O and O—H(...)N hydrogen bonds, forming a two-dimensional supra­molecular structure in the crystal.

Related literature

For tetra­zole derivatives, see: Demko & Sharpless (2001 [triangle]); Diop et al. (2002 [triangle]); Kitagawa et al. (2004 [triangle]); Li et al. (2007 [triangle]); Tamura et al. (1998 [triangle]); Tong et al. (2009 [triangle]); Zhao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3328-scheme1.jpg

Experimental

Crystal data

  • C6H10N8·2H2O
  • M r = 230.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3328-efi1.jpg
  • a = 6.994 (3) Å
  • b = 11.590 (5) Å
  • c = 14.097 (6) Å
  • β = 100.716 (7)°
  • V = 1122.8 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 294 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.979, T max = 0.983
  • 2756 measured reflections
  • 992 independent reflections
  • 722 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.147
  • S = 1.04
  • 992 reflections
  • 73 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048993/bt5418sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048993/bt5418Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was was supported by the Postgraduate Foundation of East China of Technology (No·Y09–11–02)

supplementary crystallographic information

Comment

The tetrazole derivatives are very important molecules in pharmacological and biochemical properties (Tamura et al., 1998). Since Sharpless et al. have introduced a simple and effective method to synthesize the tetrazole derivatives (Demko et al., 2001), they have been used extensively in areas as diverse as medicinal chemistry, coordination chemistry and material chemistry (Zhao et al., 2008; Kitagawa et al., 2004; Li et al., 2007). Among these, The flexible 5-substituted tetrazolate ligands have been less investigated (Diop et al., 2002), although we have studied the coordination of the bis(tetrazole) ligands separated by alkyl (CH2)n spacers (Tong et al., 2009). Here, as the additional of our work, we report the crystal structure of the title compound (Fig. 1).

1,2-Bis(tetrazol-5-yl)butpane lies on a crystallographic centre of inversion and is linked to the water molecules by N—H···O and O—H···N hydrogen bonds into a 2-D supramolecular structure (Fig. 2).

Experimental

1,2-Bis(tetrazol-5-yl)butane was prepared using a reported procedure (Tong et al., 2009) (Scheme I). 1,2-Bis(tetrazol-5-yl)butane and water (12 ml) was sealed in a 25 ml Teflon-lined stainless steel vessel and heated at 393 k for 72 hr., then cooled to room temperature. Colorless prism-shaped crystals of the title compound were isolated and washed with water and ethanol and dried in air.

Refinement

All H atoms were placed in idealized positions (O—H = 0.85 Å, N—H = 0.86 Å and C—H = 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The packing diagram of the title compound. Hydrogen bonds are shown as dashed line.

Crystal data

C6H10N8·2H2OF(000) = 488
Mr = 230.25Dx = 1.362 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1178 reflections
a = 6.994 (3) Åθ = 2.9–25.0°
b = 11.590 (5) ŵ = 0.11 mm1
c = 14.097 (6) ÅT = 294 K
β = 100.716 (7)°Block, colorless
V = 1122.8 (8) Å30.20 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer992 independent reflections
Radiation source: fine-focus sealed tube722 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.979, Tmax = 0.983k = −13→10
2756 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0759P)2 + 0.9248P] where P = (Fo2 + 2Fc2)/3
992 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.2175 (3)0.10913 (15)0.88483 (13)0.0697 (7)
H1WA0.25030.08470.94240.105*
H1WB0.21530.18230.88860.105*
N10.2521 (3)−0.00531 (16)0.72515 (14)0.0487 (6)
H10.24300.03550.77510.058*
N20.2517 (4)−0.11987 (17)0.72219 (16)0.0607 (7)
N30.2679 (4)−0.14652 (18)0.63566 (16)0.0624 (7)
N40.2787 (4)−0.05060 (17)0.58246 (14)0.0536 (7)
C10.2683 (4)0.0365 (2)0.63995 (16)0.0422 (6)
C30.2750 (4)0.1611 (2)0.61690 (17)0.0505 (7)
H3A0.39910.19220.64880.061*
H3B0.17370.20060.64280.061*
C40.2488 (4)0.1863 (2)0.50977 (17)0.0463 (7)
H4A0.35250.14930.48380.056*
H4B0.12610.15410.47710.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.131 (2)0.0449 (11)0.0368 (11)0.0010 (11)0.0256 (11)−0.0017 (8)
N10.0817 (16)0.0361 (12)0.0306 (11)−0.0005 (10)0.0162 (10)0.0006 (9)
N20.101 (2)0.0406 (13)0.0419 (13)−0.0030 (12)0.0169 (12)0.0072 (10)
N30.108 (2)0.0365 (12)0.0451 (14)−0.0027 (12)0.0196 (13)0.0011 (10)
N40.0960 (18)0.0327 (11)0.0344 (11)−0.0022 (11)0.0181 (11)0.0010 (9)
C10.0603 (16)0.0364 (12)0.0306 (12)−0.0024 (11)0.0103 (10)0.0003 (10)
C30.082 (2)0.0344 (13)0.0373 (14)−0.0022 (12)0.0157 (12)−0.0011 (11)
C40.0661 (16)0.0366 (13)0.0373 (13)−0.0007 (12)0.0120 (11)0.0020 (10)

Geometric parameters (Å, °)

O1W—H1WA0.8500C1—C31.482 (3)
O1W—H1WB0.8500C3—C41.516 (3)
N1—C11.320 (3)C3—H3A0.9700
N1—N21.328 (3)C3—H3B0.9700
N1—H10.8600C4—C4i1.503 (5)
N2—N31.284 (3)C4—H4A0.9700
N3—N41.351 (3)C4—H4B0.9700
N4—C11.305 (3)
H1WA—O1W—H1WB106.1C1—C3—H3A108.8
C1—N1—N2109.8 (2)C4—C3—H3A108.8
C1—N1—H1125.1C1—C3—H3B108.8
N2—N1—H1125.1C4—C3—H3B108.8
N3—N2—N1105.69 (19)H3A—C3—H3B107.7
N2—N3—N4110.7 (2)C4i—C4—C3111.7 (3)
C1—N4—N3106.1 (2)C4i—C4—H4A109.3
N4—C1—N1107.7 (2)C3—C4—H4A109.3
N4—C1—C3127.6 (2)C4i—C4—H4B109.3
N1—C1—C3124.7 (2)C3—C4—H4B109.3
C1—C3—C4113.8 (2)H4A—C4—H4B108.0
C1—N1—N2—N30.1 (3)N2—N1—C1—N4−0.1 (3)
N1—N2—N3—N40.0 (3)N2—N1—C1—C3−179.6 (2)
N2—N3—N4—C10.0 (3)N4—C1—C3—C413.6 (4)
N3—N4—C1—N10.1 (3)N1—C1—C3—C4−167.1 (3)
N3—N4—C1—C3179.5 (2)C1—C3—C4—C4i178.4 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N3ii0.852.022.851 (3)165
O1W—H1WA···N4iii0.851.992.822 (3)167
N1—H1···O1W0.861.802.662 (3)175

Symmetry codes: (ii) −x+1/2, y+1/2, −z+3/2; (iii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5418).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GmbH, Bonn, Germany.
  • Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem.66, 7945–7950. [PubMed]
  • Diop, C. A. K., Mahon, M. F., Molloy, K. C., Ooi, L., Raaithby, P. R., Venter, M. M. & Teat, S. J. (2002). CrystEngComm, 4, 462–466.
  • Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Li, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527–1529. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tamura, Y., Watanabe, F. & Nakatani, T. (1998). J. Med Chem.41, 640–649. [PubMed]
  • Tong, X. L., Wang, D. Z., Hu, T. L., Song, W. C., Tao, Y. & Bu, X. H. (2009). Cryst. Growth Des.9, 2280–2286.
  • Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev.37, 84–100. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography