PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1577–m1578.
Published online 2010 November 17. doi:  10.1107/S1600536810046386
PMCID: PMC3011475

Bis[tetra­aqua­(1,10-phenanthroline-κ2 N,N′)cobalt(II)] hexa­aqua­cobalt(II) bis­[3,5-bis­(carboxyl­atometh­oxy)benzoate] tetra­hydrate

Abstract

The title compound, [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2O, was obtanied by the reaction of cobalt acetate with 3,5-bis­(carb­oxy­meth­oxy)benzoic acid and 1,10-phenanthroline. The asymmetric unit contains one tetra­aqua­(1,10-phenanthroline)cobalt(II) cation, one half of a hexa­aqua­cobalt(II) cation that is completed by inversion symmetry, one 3,5-bis­(carboxyl­atometh­oxy)benzoate trianion and two lattice water mol­ecules. The two CoII atoms each show a slightly distorted octa­hedral coordination (CoO6 and CoO4N2). The cations, anions and lattice water mol­ecules are linked by an intricate network of O—H(...)O hydrogen bonds into a three-dimensional structure.

Related literature

For background to multicarboxyl­ate ligands, see: Cao et al. (2002 [triangle]); Dai et al. (2002 [triangle]); He et al. (2008 [triangle]); Rowsell et al. (2005 [triangle]); Wang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1577-scheme1.jpg

Experimental

Crystal data

  • [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2O
  • M r = 1395.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1577-efi1.jpg
  • a = 7.0924 (1) Å
  • b = 20.3779 (4) Å
  • c = 20.1810 (3) Å
  • β = 99.063 (1)°
  • V = 2880.31 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 296 K
  • 0.22 × 0.15 × 0.07 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.839, T max = 0.933
  • 21923 measured reflections
  • 5080 independent reflections
  • 3751 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.100
  • S = 1.09
  • 5080 reflections
  • 450 parameters
  • 27 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046386/wm2426sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046386/wm2426Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Multibenzenecarboxylate ligands, such as terephthalic acid, 1,3,5-benzenetricarboxylic acid, or 1,2,4,5-benzenetetracarboxylic acid, have been employed in the construction of numerous framework compounds (Dai et al., 2002; Rowsell et al., 2005; Wang et al., 2005; Cao et al., 2002). Herein, on the basis of the rigidity of 3,5-dihydroxybenzoic acid, we successfully designed a new multicarboxylate ligand, viz. 3,5-bis-carboxymethoxy-benzoic acid (C11H10O8) (He et al., 2008). In this work, we report the synthesis and structure of a new compound, [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2.4H2O, (I).

A perspective view of the molecular entities of compound (I) is presented in Fig.1. The asymmetric unit consists of one [Co(C12H8N2)(H2O)4]2+, half a [Co(H2O)6]2+ cation (1 symmetry), one (C11H7O8)23- anion, and two lattice water molecules. In the cations, the CoII atoms show a slightly distorted octahedral coordination (CoO6 and CoO4N2, respectively). In the anion, one of the carboxymethyl groups is almost co-planar to the benzene ring with the dihedral angle of 3.5 (1)°, while the formate group makes a dihedral angle of 17.2 (1)° with the benzene ring. The other carboxymethyl group is almost perpendicular to the benzene ring with the torsion angle C17—O6—C22—C23 of 81.3 (3)°. Together with lattice water molecules, the carboxylic O atoms act as acceptors of O—H···O hydrogen bonds forming a three-dimensional structure (Fig. 2).

Experimental

A mixture of 3,5-bis-carboxymethoxy-benzoic acid (0.373 g, 1.50 mmol), Co(CH3COO)2.4H2O (0.282 g, 1.00 mmol), 1,10-phenanthroline (0.049 g, 0.25 mmol), and Na2CO3 (0.079 g, 0.75 mmol) in C2H5OH (2 ml)/H2O (16 ml) was placed in a Teflon-lined stainless steel vessel and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Then the reaction mixture was filtered and well-shaped pink crystals of compound (I) were obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93Å and aliphatic C—H 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms were located in difference Fourier maps and refined with the O—H distance restrained to 0.85 Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Perspective view of the molecular entities of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The three-dimensional set up of structure of (I), viewed down [100]. Dashed lines indicate hydrogen bonds.

Crystal data

[Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2OF(000) = 1446
Mr = 1395.82Dx = 1.609 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3158 reflections
a = 7.0924 (1) Åθ = 1.4–25.0°
b = 20.3779 (4) ŵ = 0.96 mm1
c = 20.1810 (3) ÅT = 296 K
β = 99.063 (1)°Block, pink
V = 2880.31 (8) Å30.22 × 0.15 × 0.07 mm
Z = 2

Data collection

Bruker APEXII area-detector diffractometer5080 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
graphiteRint = 0.054
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.839, Tmax = 0.933k = −24→24
21923 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0472P)2] where P = (Fo2 + 2Fc2)/3
5080 reflections(Δ/σ)max = 0.001
450 parametersΔρmax = 0.31 e Å3
27 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.00000.50000.03353 (17)
Co20.74606 (6)0.243825 (19)0.763479 (18)0.03271 (14)
N10.7089 (3)0.34589 (12)0.74971 (11)0.0339 (6)
N20.7521 (3)0.25550 (12)0.65761 (11)0.0344 (6)
O1W0.6596 (4)0.23471 (14)0.85757 (11)0.0551 (7)
H1WA0.696 (4)0.2535 (16)0.8930 (12)0.066*
H1WB0.548 (3)0.2210 (18)0.8584 (16)0.066*
O10.7285 (4)0.00598 (10)0.32671 (11)0.0589 (7)
O2W0.8488 (3)0.14848 (11)0.76823 (11)0.0441 (6)
H2WA0.921 (4)0.1411 (17)0.8057 (9)0.053*
H2WB0.926 (4)0.1379 (16)0.7422 (11)0.053*
O20.6887 (3)0.11208 (10)0.34103 (9)0.0383 (5)
O3W0.4615 (3)0.21473 (13)0.72790 (10)0.0486 (6)
H3WA0.395 (4)0.1961 (15)0.7526 (12)0.058*
H3WB0.413 (4)0.2101 (17)0.6903 (8)0.058*
O30.7342 (3)0.20327 (10)0.11420 (9)0.0472 (6)
O40.7996 (3)0.32426 (10)0.08547 (9)0.0479 (6)
O4W1.0173 (3)0.26858 (11)0.81544 (12)0.0474 (6)
H4WA1.106 (4)0.2421 (12)0.8289 (16)0.057*
H4WB1.072 (4)0.3051 (9)0.8180 (16)0.057*
O5W0.4188 (4)0.04985 (11)0.57696 (12)0.0663 (8)
H5WA0.367 (5)0.0307 (15)0.6061 (15)0.080*
H5WB0.389 (6)0.0890 (9)0.5780 (18)0.080*
O50.7541 (3)0.30672 (10)−0.02457 (9)0.0382 (5)
O6W0.4901 (3)0.08954 (10)0.44683 (10)0.0457 (6)
H6WA0.533 (4)0.0971 (15)0.4139 (12)0.055*
H6WB0.420 (4)0.1186 (13)0.4560 (15)0.055*
O60.6088 (4)−0.02370 (11)0.07416 (10)0.0524 (6)
O7W0.7879 (4)0.02001 (14)0.54018 (13)0.0592 (7)
H7WA0.849 (4)0.0467 (13)0.5203 (16)0.071*
H7WB0.860 (5)−0.0126 (12)0.5454 (18)0.071*
O70.6937 (3)−0.18124 (10)0.15287 (10)0.0434 (5)
O80.8981 (3)−0.10571 (11)0.12730 (10)0.0465 (6)
O8W1.1066 (5)0.11321 (14)0.68801 (14)0.0824 (10)
H8WB1.097 (6)0.1260 (18)0.6478 (12)0.099*
H8WA1.137 (6)0.0734 (10)0.6857 (19)0.099*
O9W0.4790 (4)0.40818 (12)−0.04843 (13)0.0514 (6)
H9WA0.552 (4)0.3760 (13)−0.0411 (14)0.048 (11)*
H9WB0.401 (5)0.3993 (19)−0.0817 (15)0.104 (19)*
C10.6998 (4)0.39104 (16)0.79609 (15)0.0417 (8)
H1A0.70740.37750.84040.050*
C20.6795 (5)0.45779 (17)0.78211 (17)0.0518 (9)
H2A0.67790.48810.81650.062*
C30.6622 (5)0.47783 (17)0.71727 (19)0.0530 (9)
H3A0.64460.52210.70680.064*
C40.6708 (4)0.43239 (16)0.66644 (15)0.0420 (8)
C50.6501 (5)0.44923 (19)0.59653 (17)0.0543 (10)
H5A0.62940.49270.58350.065*
C60.6604 (5)0.40298 (19)0.54975 (16)0.0521 (9)
H6A0.64440.41510.50480.062*
C70.6953 (4)0.33579 (17)0.56737 (14)0.0406 (8)
C80.6990 (4)0.36689 (15)0.68516 (14)0.0335 (7)
C90.7180 (4)0.31756 (15)0.63583 (13)0.0325 (7)
C100.7060 (5)0.28512 (19)0.52134 (16)0.0498 (9)
H10A0.69040.29430.47570.060*
C110.7391 (5)0.2229 (2)0.54308 (15)0.0512 (9)
H11A0.74590.18920.51250.061*
C120.7631 (5)0.20916 (17)0.61220 (15)0.0446 (8)
H12A0.78760.16620.62660.054*
C130.6916 (4)0.07233 (14)0.22994 (13)0.0324 (7)
C140.7154 (4)0.13290 (14)0.20404 (13)0.0326 (7)
H14A0.73790.16910.23230.039*
C150.7059 (4)0.14038 (14)0.13487 (13)0.0335 (7)
C160.6709 (4)0.08749 (14)0.09286 (14)0.0352 (7)
H16A0.66370.09250.04670.042*
C170.6463 (4)0.02584 (15)0.12065 (14)0.0375 (7)
C180.6587 (4)0.01780 (15)0.18883 (14)0.0373 (7)
H18A0.6453−0.02350.20700.045*
C190.7032 (4)0.06265 (15)0.30421 (13)0.0364 (7)
C200.7191 (4)0.21662 (14)0.04494 (12)0.0303 (7)
H20A0.59130.20640.02250.036*
H20B0.80880.18960.02540.036*
C210.7619 (4)0.28832 (14)0.03547 (13)0.0301 (7)
C220.5633 (5)−0.08635 (15)0.09867 (16)0.0491 (9)
H22A0.4917−0.11100.06200.059*
H22B0.4811−0.08010.13230.059*
C230.7349 (5)−0.12653 (16)0.12912 (13)0.0366 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0424 (4)0.0287 (3)0.0329 (3)0.0087 (3)0.0163 (3)0.0036 (2)
Co20.0366 (3)0.0297 (3)0.0316 (2)0.00050 (19)0.00464 (18)−0.00106 (17)
N10.0316 (15)0.0339 (15)0.0350 (13)0.0041 (12)0.0014 (11)−0.0024 (11)
N20.0332 (16)0.0364 (16)0.0336 (13)−0.0016 (12)0.0057 (11)−0.0043 (11)
O1W0.0514 (16)0.0808 (19)0.0353 (12)−0.0249 (14)0.0131 (12)−0.0124 (12)
O10.106 (2)0.0308 (14)0.0483 (12)0.0189 (13)0.0372 (14)0.0146 (10)
O2W0.0503 (16)0.0350 (13)0.0458 (12)0.0040 (12)0.0035 (11)−0.0021 (11)
O20.0557 (15)0.0302 (12)0.0309 (10)0.0071 (10)0.0126 (10)0.0033 (9)
O3W0.0424 (15)0.0666 (17)0.0352 (11)−0.0129 (13)0.0014 (11)0.0045 (12)
O30.0793 (18)0.0323 (13)0.0291 (10)−0.0105 (12)0.0054 (11)0.0057 (9)
O40.0784 (17)0.0317 (13)0.0357 (11)−0.0141 (12)0.0151 (11)−0.0048 (10)
O4W0.0341 (14)0.0287 (13)0.0752 (16)−0.0024 (11)−0.0048 (12)0.0041 (12)
O5W0.120 (2)0.0343 (14)0.0587 (14)0.0220 (15)0.0592 (15)0.0090 (12)
O50.0533 (14)0.0325 (12)0.0288 (10)−0.0056 (10)0.0066 (10)0.0048 (9)
O6W0.0620 (17)0.0366 (14)0.0452 (12)0.0151 (12)0.0291 (12)0.0126 (10)
O60.0850 (19)0.0275 (13)0.0391 (11)0.0028 (12)−0.0075 (12)−0.0026 (10)
O7W0.0489 (17)0.0568 (18)0.0733 (16)0.0085 (13)0.0140 (13)0.0192 (14)
O70.0420 (14)0.0323 (13)0.0552 (13)0.0002 (11)0.0058 (11)0.0082 (10)
O80.0469 (16)0.0452 (15)0.0470 (13)−0.0055 (12)0.0065 (11)0.0075 (10)
O8W0.115 (3)0.0616 (19)0.0827 (19)0.0341 (19)0.0517 (19)0.0138 (16)
O9W0.0445 (16)0.0475 (17)0.0584 (16)0.0085 (14)−0.0037 (13)−0.0078 (13)
C10.040 (2)0.041 (2)0.0430 (17)0.0031 (16)0.0013 (15)−0.0073 (15)
C20.051 (2)0.042 (2)0.061 (2)0.0047 (18)0.0050 (18)−0.0142 (17)
C30.047 (2)0.032 (2)0.080 (3)0.0069 (17)0.0096 (19)0.0036 (18)
C40.034 (2)0.037 (2)0.0546 (19)0.0015 (16)0.0040 (15)0.0088 (16)
C50.046 (2)0.049 (2)0.067 (2)0.0035 (19)0.0087 (18)0.0227 (19)
C60.046 (2)0.062 (3)0.048 (2)0.0006 (19)0.0068 (17)0.0248 (18)
C70.0276 (18)0.057 (2)0.0373 (16)−0.0055 (16)0.0056 (14)0.0055 (15)
C80.0247 (17)0.0343 (18)0.0404 (16)−0.0015 (14)0.0018 (13)0.0021 (14)
C90.0231 (17)0.0380 (19)0.0360 (15)−0.0038 (14)0.0036 (13)0.0057 (13)
C100.043 (2)0.072 (3)0.0354 (17)−0.008 (2)0.0093 (16)0.0033 (18)
C110.046 (2)0.070 (3)0.0389 (18)−0.006 (2)0.0102 (16)−0.0157 (17)
C120.045 (2)0.044 (2)0.0459 (18)0.0017 (17)0.0081 (16)−0.0065 (16)
C130.0323 (18)0.0343 (18)0.0321 (15)0.0024 (14)0.0101 (13)0.0015 (13)
C140.0398 (19)0.0258 (17)0.0329 (15)0.0004 (14)0.0081 (14)0.0028 (12)
C150.0407 (19)0.0265 (17)0.0334 (15)−0.0006 (14)0.0059 (14)0.0087 (13)
C160.040 (2)0.0321 (18)0.0327 (15)0.0024 (15)0.0025 (14)0.0057 (13)
C170.042 (2)0.0303 (18)0.0378 (16)0.0029 (15)−0.0010 (14)−0.0046 (13)
C180.044 (2)0.0290 (17)0.0388 (16)0.0024 (15)0.0048 (14)0.0067 (13)
C190.041 (2)0.0363 (19)0.0353 (15)0.0046 (16)0.0155 (14)0.0081 (14)
C200.0342 (18)0.0302 (17)0.0258 (14)−0.0016 (14)0.0025 (13)0.0018 (12)
C210.0338 (18)0.0262 (17)0.0314 (15)−0.0027 (14)0.0086 (13)0.0016 (13)
C220.061 (3)0.0277 (19)0.0520 (19)−0.0018 (17)−0.0109 (17)−0.0066 (15)
C230.047 (2)0.035 (2)0.0256 (14)0.0019 (17)0.0007 (14)−0.0030 (13)

Geometric parameters (Å, °)

Co1—O5Wi2.0144 (19)O8W—H8WB0.845 (18)
Co1—O5W2.0144 (19)O8W—H8WA0.842 (18)
Co1—O6Wi2.112 (2)O9W—H9WA0.833 (17)
Co1—O6W2.112 (2)O9W—H9WB0.819 (18)
Co1—O7W2.115 (3)C1—C21.392 (5)
Co1—O7Wi2.115 (3)C1—H1A0.9300
Co2—O2W2.072 (2)C2—C31.358 (5)
Co2—O1W2.093 (2)C2—H2A0.9300
Co2—O4W2.102 (2)C3—C41.390 (4)
Co2—N12.109 (2)C3—H3A0.9300
Co2—O3W2.118 (2)C4—C81.393 (4)
Co2—N22.157 (2)C4—C51.437 (4)
N1—C11.321 (4)C5—C61.344 (5)
N1—C81.362 (3)C5—H5A0.9300
N2—C121.327 (4)C6—C71.426 (5)
N2—C91.348 (4)C6—H6A0.9300
O1W—H1WA0.816 (17)C7—C101.399 (5)
O1W—H1WB0.839 (17)C7—C91.415 (4)
O1—C191.244 (3)C8—C91.436 (4)
O2W—H2WA0.856 (17)C10—C111.350 (5)
O2W—H2WB0.846 (17)C10—H10A0.9300
O2—C191.266 (3)C11—C121.406 (4)
O3W—H3WA0.831 (17)C11—H11A0.9300
O3W—H3WB0.788 (17)C12—H12A0.9300
O3—C151.372 (3)C13—C141.361 (4)
O3—C201.412 (3)C13—C181.384 (4)
O4—C211.241 (3)C13—C191.501 (3)
O4W—H4WA0.841 (17)C14—C151.395 (3)
O4W—H4WB0.837 (17)C14—H14A0.9300
O5W—H5WA0.837 (17)C15—C161.370 (4)
O5W—H5WB0.826 (18)C16—C171.398 (4)
O5—C211.261 (3)C16—H16A0.9300
O6W—H6WA0.788 (17)C17—C181.375 (4)
O6W—H6WB0.810 (17)C18—H18A0.9300
O6—C171.375 (3)C20—C211.511 (4)
O6—C221.424 (4)C20—H20A0.9700
O7W—H7WA0.836 (18)C20—H20B0.9700
O7W—H7WB0.834 (18)C22—C231.515 (4)
O7—C231.266 (4)C22—H22A0.9700
O8—C231.239 (4)C22—H22B0.9700
O5Wi—Co1—O5W180.00 (8)C2—C3—H3A119.9
O5Wi—Co1—O6Wi88.01 (8)C4—C3—H3A119.9
O5W—Co1—O6Wi91.99 (8)C3—C4—C8117.3 (3)
O5Wi—Co1—O6W91.99 (8)C3—C4—C5123.8 (3)
O5W—Co1—O6W88.01 (8)C8—C4—C5118.9 (3)
O6Wi—Co1—O6W180.000 (1)C6—C5—C4120.9 (3)
O5Wi—Co1—O7W90.96 (12)C6—C5—H5A119.5
O5W—Co1—O7W89.04 (12)C4—C5—H5A119.5
O6Wi—Co1—O7W91.08 (10)C5—C6—C7121.6 (3)
O6W—Co1—O7W88.92 (10)C5—C6—H6A119.2
O5Wi—Co1—O7Wi89.04 (12)C7—C6—H6A119.2
O5W—Co1—O7Wi90.96 (12)C10—C7—C9116.4 (3)
O6Wi—Co1—O7Wi88.92 (10)C10—C7—C6124.6 (3)
O6W—Co1—O7Wi91.08 (10)C9—C7—C6118.9 (3)
O7W—Co1—O7Wi180.0N1—C8—C4123.0 (3)
O2W—Co2—O1W91.48 (10)N1—C8—C9116.5 (3)
O2W—Co2—O4W85.09 (9)C4—C8—C9120.5 (3)
O1W—Co2—O4W86.82 (10)N2—C9—C7123.5 (3)
O2W—Co2—N1165.12 (9)N2—C9—C8117.5 (2)
O1W—Co2—N199.13 (10)C7—C9—C8119.0 (3)
O4W—Co2—N185.11 (9)C11—C10—C7120.1 (3)
O2W—Co2—O3W93.59 (10)C11—C10—H10A119.9
O1W—Co2—O3W83.29 (9)C7—C10—H10A119.9
O4W—Co2—O3W169.99 (9)C10—C11—C12119.8 (3)
N1—Co2—O3W97.97 (10)C10—C11—H11A120.1
O2W—Co2—N295.03 (9)C12—C11—H11A120.1
O1W—Co2—N2164.28 (10)N2—C12—C11122.2 (3)
O4W—Co2—N2107.96 (10)N2—C12—H12A118.9
N1—Co2—N277.42 (9)C11—C12—H12A118.9
O3W—Co2—N282.04 (8)C14—C13—C18121.1 (2)
C1—N1—C8117.2 (3)C14—C13—C19120.8 (3)
C1—N1—Co2127.8 (2)C18—C13—C19118.1 (3)
C8—N1—Co2114.98 (19)C13—C14—C15119.6 (3)
C12—N2—C9118.0 (3)C13—C14—H14A120.2
C12—N2—Co2128.2 (2)C15—C14—H14A120.2
C9—N2—Co2113.33 (17)C16—C15—O3124.6 (2)
Co2—O1W—H1WA131 (2)C16—C15—C14120.6 (3)
Co2—O1W—H1WB117 (2)O3—C15—C14114.8 (3)
H1WA—O1W—H1WB108 (2)C15—C16—C17118.7 (3)
Co2—O2W—H2WA111 (2)C15—C16—H16A120.6
Co2—O2W—H2WB118 (2)C17—C16—H16A120.6
H2WA—O2W—H2WB99 (2)C18—C17—O6124.8 (3)
Co2—O3W—H3WA122 (2)C18—C17—C16121.1 (3)
Co2—O3W—H3WB127 (2)O6—C17—C16114.1 (2)
H3WA—O3W—H3WB109 (3)C17—C18—C13118.9 (3)
C15—O3—C20119.3 (2)C17—C18—H18A120.6
Co2—O4W—H4WA126 (2)C13—C18—H18A120.6
Co2—O4W—H4WB129 (2)O1—C19—O2123.0 (2)
H4WA—O4W—H4WB103 (2)O1—C19—C13117.9 (3)
Co1—O5W—H5WA121 (2)O2—C19—C13119.0 (3)
Co1—O5W—H5WB128 (2)O3—C20—C21109.0 (2)
H5WA—O5W—H5WB107 (2)O3—C20—H20A109.9
Co1—O6W—H6WA128 (2)C21—C20—H20A109.9
Co1—O6W—H6WB119 (2)O3—C20—H20B109.9
H6WA—O6W—H6WB112 (3)C21—C20—H20B109.9
C17—O6—C22116.8 (2)H20A—C20—H20B108.3
Co1—O7W—H7WA119 (2)O4—C21—O5125.2 (3)
Co1—O7W—H7WB115 (3)O4—C21—C20119.3 (2)
H7WA—O7W—H7WB103 (2)O5—C21—C20115.5 (2)
H8WB—O8W—H8WA103 (2)O6—C22—C23114.4 (3)
H9WA—O9W—H9WB107 (3)O6—C22—H22A108.6
N1—C1—C2123.5 (3)C23—C22—H22A108.6
N1—C1—H1A118.3O6—C22—H22B108.6
C2—C1—H1A118.3C23—C22—H22B108.6
C3—C2—C1118.7 (3)H22A—C22—H22B107.6
C3—C2—H2A120.7O8—C23—O7125.8 (3)
C1—C2—H2A120.7O8—C23—C22119.9 (3)
C2—C3—C4120.2 (3)O7—C23—C22114.3 (3)
O2W—Co2—N1—C1−114.6 (4)Co2—N2—C9—C85.0 (3)
O1W—Co2—N1—C120.4 (3)C10—C7—C9—N21.2 (4)
O4W—Co2—N1—C1−65.6 (3)C6—C7—C9—N2−179.7 (3)
O3W—Co2—N1—C1104.8 (3)C10—C7—C9—C8−177.0 (3)
N2—Co2—N1—C1−175.2 (3)C6—C7—C9—C82.1 (4)
O2W—Co2—N1—C863.3 (4)N1—C8—C9—N2−2.8 (4)
O1W—Co2—N1—C8−161.7 (2)C4—C8—C9—N2177.6 (3)
O4W—Co2—N1—C8112.3 (2)N1—C8—C9—C7175.5 (3)
O3W—Co2—N1—C8−77.3 (2)C4—C8—C9—C7−4.1 (4)
N2—Co2—N1—C82.66 (19)C9—C7—C10—C11−0.8 (5)
O2W—Co2—N2—C1217.1 (3)C6—C7—C10—C11−179.8 (3)
O1W—Co2—N2—C12−97.0 (4)C7—C10—C11—C12−0.2 (5)
O4W—Co2—N2—C12103.6 (3)C9—N2—C12—C11−0.5 (5)
N1—Co2—N2—C12−175.9 (3)Co2—N2—C12—C11170.9 (2)
O3W—Co2—N2—C12−75.8 (3)C10—C11—C12—N20.9 (5)
O2W—Co2—N2—C9−171.1 (2)C18—C13—C14—C150.2 (4)
O1W—Co2—N2—C974.8 (4)C19—C13—C14—C15179.3 (3)
O4W—Co2—N2—C9−84.6 (2)C20—O3—C15—C162.9 (4)
N1—Co2—N2—C9−4.08 (19)C20—O3—C15—C14−177.2 (3)
O3W—Co2—N2—C996.0 (2)C13—C14—C15—C160.7 (5)
C8—N1—C1—C20.5 (5)C13—C14—C15—O3−179.2 (3)
Co2—N1—C1—C2178.4 (2)O3—C15—C16—C17179.5 (3)
N1—C1—C2—C32.1 (5)C14—C15—C16—C17−0.5 (5)
C1—C2—C3—C4−2.0 (5)C22—O6—C17—C185.8 (5)
C2—C3—C4—C8−0.5 (5)C22—O6—C17—C16−173.9 (3)
C2—C3—C4—C5178.8 (3)C15—C16—C17—C18−0.7 (5)
C3—C4—C5—C6179.8 (3)C15—C16—C17—O6179.0 (3)
C8—C4—C5—C6−0.9 (5)O6—C17—C18—C13−178.0 (3)
C4—C5—C6—C7−1.1 (5)C16—C17—C18—C131.6 (5)
C5—C6—C7—C10179.4 (3)C14—C13—C18—C17−1.4 (5)
C5—C6—C7—C90.5 (5)C19—C13—C18—C17179.5 (3)
C1—N1—C8—C4−3.2 (4)C14—C13—C19—O1−162.3 (3)
Co2—N1—C8—C4178.6 (2)C18—C13—C19—O116.8 (4)
C1—N1—C8—C9177.2 (3)C14—C13—C19—O217.1 (4)
Co2—N1—C8—C9−1.0 (3)C18—C13—C19—O2−163.8 (3)
C3—C4—C8—N13.3 (5)C15—O3—C20—C21−178.3 (2)
C5—C4—C8—N1−176.1 (3)O3—C20—C21—O4−0.9 (4)
C3—C4—C8—C9−177.2 (3)O3—C20—C21—O5179.7 (2)
C5—C4—C8—C93.5 (4)C17—O6—C22—C23−81.3 (3)
C12—N2—C9—C7−0.6 (4)O6—C22—C23—O8−4.5 (4)
Co2—N2—C9—C7−173.3 (2)O6—C22—C23—O7177.7 (2)
C12—N2—C9—C8177.7 (3)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O7ii0.84 (2)1.88 (2)2.713 (3)173 (3)
O2W—H2WA···O8ii0.86 (2)1.86 (2)2.690 (3)163 (3)
O8W—H8WA···O1ii0.84 (2)1.91 (2)2.732 (3)163 (4)
O4W—H4WB···O2iii0.84 (2)1.91 (2)2.731 (3)169 (3)
O7W—H7WA···O9Wiii0.84 (2)2.01 (2)2.818 (3)164 (3)
O8W—H8WB···O4iii0.85 (2)2.29 (3)2.945 (3)134 (4)
O3W—H3WA···O7i0.83 (2)2.12 (2)2.881 (3)152 (3)
O5W—H5WA···O1i0.84 (2)1.77 (2)2.609 (3)175 (4)
O1W—H1WB···O7i0.84 (2)1.88 (2)2.711 (3)170 (3)
O6W—H6WB···O5iv0.81 (2)2.00 (2)2.812 (3)177 (3)
O5W—H5WB···O4iv0.83 (2)1.89 (2)2.715 (3)174 (4)
O3W—H3WB···O4iv0.79 (2)2.25 (2)3.029 (3)168 (4)
O3W—H3WB···O3iv0.79 (2)2.54 (3)3.080 (3)127 (3)
O9W—H9WB···O2v0.82 (2)2.00 (2)2.818 (3)172 (4)
O7W—H7WB···O9Wvi0.83 (2)1.97 (2)2.805 (4)174 (4)
O1W—H1WA···O5vii0.82 (2)1.97 (2)2.785 (3)172 (4)
O6W—H6WA···O20.79 (2)2.00 (2)2.775 (3)169 (3)
O2W—H2WB···O8W0.85 (2)1.88 (2)2.723 (3)177 (3)
O9W—H9WA···O50.83 (2)2.00 (2)2.831 (3)173 (3)

Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (i) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+3/2, y−1/2, −z+1/2; (vii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2426).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem.41, 2087–2094. [PubMed]
  • Dai, J. C., Wu, X. T. & Fu, Z. Y. (2002). Chem. Commun. pp. 12–13. [PubMed]
  • He, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des.10, 3586–3594.
  • Rowsell, J. L. C., Spenser, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. (2005). Science, 309, 1350–1354. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Goéttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Kravtsov, V. Ch. & Zaworotko, M. J. (2005). Angew. Chem. Int. Ed.44, 2877–2880. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography