PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3136.
Published online 2010 November 13. doi:  10.1107/S1600536810045423
PMCID: PMC3011465

trans-2-(2-Nitro-1-phenyl­eth­yl)cyclo­hexa­none

Abstract

In the title compound, C14H17NO3, the plane of the phenyl ring and the least-squares plane of the cyclo­hexyl moiety enclose an angle of 89.14 (6)°. The cyclohexyl ring adopts a chair conformation. In the crystal, the molecules are linked by weak C—H(...)O bonds, with each of the nitro-O atoms accepting two such interactions.

Related literature

For the history and synthesis of nitro­alkenes, see: Tsogoeva et al. (2007 [triangle]); Sulzer-Mosse & Alexakis (2007 [triangle]); Mukherjee et al. (2007 [triangle]); Kempf et al. (2003 [triangle]); Blarer et al. (1982 [triangle]); Juaristi et al. (1993 [triangle]). For related structures, see: Cobb et al. (2005 [triangle]), Xu et al. (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3136-scheme1.jpg

Experimental

Crystal data

  • C14H17NO3
  • M r = 247.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3136-efi1.jpg
  • a = 13.4567 (6) Å
  • b = 8.3618 (4) Å
  • c = 11.3668 (5) Å
  • β = 91.734 (4)°
  • V = 1278.43 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 K
  • 0.38 × 0.27 × 0.18 mm

Data collection

  • Oxford Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006 [triangle]) T min = 0.986, T max = 1.000
  • 9360 measured reflections
  • 2605 independent reflections
  • 1829 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.090
  • S = 0.98
  • 2605 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045423/ng5052sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045423/ng5052Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Prof. Thomas M. Klapötke for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

Nitroalkenes are important reagents in organic chemistry and they are the most prominent Michael acceptors used in organocatalytic reactions [Tsogoeva et al. (2007), Sulzer-Mosse et al. (2007), Mukherjee et al. (2007)]. During our studies on the electrophilic reactivity of trans-β-nitrostyrenes, we employed enamines of known nucleophilic reactivities and, hence, obtained the title compound from a reaction of trans-β-nitrostyrene and 1-pyrrolidinocyclohexene [Kempf et al. (2003), Blarer et al. (1982), Juaristi et al. (1993)].

In the title compound, the 1'-Phenyl-2'-nitro-ethyl moiety occupies an equatorial binding site in 2-position of the cyclohexanone ring (see Fig. 1). The plane of the phenyl ring and the least-square plane of the cyclohexyl moiety enclose an angle of 89.14 (6)° which is close to the angles found in enantiopure crystals of the title compound (87.1 (3)° at 180 K (Cobb et al. (2005)), 87.40 (8)° at 296 K (Xu et al., 2007a,b)). The plane through the nitro group and the adjacent C1 atom encloses an angle of 68.81 (7)° with the phenyl ring.

Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van-der-Waals radii, the molecules are linked by very weak contacts of the type C—H···O with nitro-O atoms as acceptors (see Fig. 2). The molecular structure of the title compound is stabilized by these contacts as well, as the involved hydrogen atoms are located in the cyclohexyl ring, the phenyl ring and the nitro-ethyl side chain. The keto group is not involved in hydrogen bonding. π-stacking and C—H···π-interactions are not observed.

Experimental

trans-2-[1'-Phenyl-2'-nitro-ethyl]-cyclohexanone has been obtained by dissolving trans-β-nitrostyrene (4.05 mmol, 604 mg) in dry diethylether (40 ml) and dropwise addition of 1-pyrrolidinocyclohexene (4.05 mmol, 612 mg) at -78 °C. After stirring the reaction at RT for 2 h, 60 ml water, 60 ml e thanol and 5 ml 1M HCl have been added, and the mixture was stirred for 30 min at 60 °C. After removing the solvent in vacuo, a white solid has been obtained (3.01 mmol, 745 mg, 74%).

Crystallization procedure: The title compound was dissolved in ethanol and heated to the boiling point. The solvent was allowed to cool slowly to room temperature. After 24 h, colourless crystals had formed that were suitable for X-ray analysis; mp 108 °C.

Refinement

All H atoms were calculated in ideal geometry and refined in a riding model.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
Weak intermolecular interactions in the crystal structure of the title compound viewed along [100].

Crystal data

C14H17NO3F(000) = 528
Mr = 247.29Dx = 1.285 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3796 reflections
a = 13.4567 (6) Åθ = 4.3–26.3°
b = 8.3618 (4) ŵ = 0.09 mm1
c = 11.3668 (5) ÅT = 173 K
β = 91.734 (4)°Block, colourless
V = 1278.43 (10) Å30.38 × 0.27 × 0.18 mm
Z = 4

Data collection

Oxford Xcalibur diffractometer2605 independent reflections
Radiation source: fine-focus sealed tube1829 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 26.4°, θmin = 4.3°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006)h = −16→16
Tmin = 0.986, Tmax = 1.000k = −10→10
9360 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0503P)2] where P = (Fo2 + 2Fc2)/3
2605 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.41 (release 06-05-2009 CrysAlis171 .NET) (compiled May 6 2009,17:20:42) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.27791 (8)0.45264 (12)0.27671 (8)0.0497 (3)
O20.30532 (7)0.25646 (11)0.39600 (7)0.0361 (3)
O30.46549 (7)−0.07785 (11)0.20442 (8)0.0378 (3)
N10.30166 (8)0.31433 (13)0.29688 (9)0.0272 (3)
C10.32921 (9)0.20990 (14)0.19718 (10)0.0243 (3)
H1A0.40120.18540.20290.029*
H1B0.31550.26610.12180.029*
C20.26933 (9)0.05426 (14)0.20005 (10)0.0214 (3)
H20.28170.00360.27880.026*
C30.30432 (9)−0.06309 (14)0.10615 (10)0.0217 (3)
H30.2931−0.01240.02720.026*
C40.41304 (9)−0.11083 (15)0.11829 (11)0.0258 (3)
C50.44795 (10)−0.21687 (16)0.02103 (11)0.0333 (3)
H5A0.5197−0.24030.03300.040*
H5B0.4383−0.1623−0.05580.040*
C60.38803 (10)−0.37313 (16)0.02159 (11)0.0333 (3)
H6A0.4068−0.4406−0.04580.040*
H6B0.4037−0.43300.09500.040*
C70.27722 (9)−0.33748 (16)0.01310 (11)0.0325 (3)
H7A0.2397−0.43860.02050.039*
H7B0.2605−0.2914−0.06530.039*
C80.24528 (10)−0.22137 (15)0.10807 (11)0.0279 (3)
H8A0.2551−0.27240.18620.033*
H8B0.1735−0.19780.09660.033*
C90.15860 (9)0.08735 (14)0.18614 (10)0.0220 (3)
C100.11872 (9)0.16173 (15)0.08584 (10)0.0298 (3)
H100.16180.19820.02680.036*
C110.01755 (10)0.18327 (17)0.07092 (12)0.0358 (3)
H11−0.00820.23490.00210.043*
C12−0.04660 (10)0.13068 (16)0.15475 (12)0.0368 (4)
H12−0.11630.14390.14340.044*
C13−0.00848 (11)0.05889 (17)0.25497 (13)0.0393 (4)
H13−0.05210.02310.31360.047*
C140.09322 (10)0.03820 (16)0.27118 (11)0.0316 (3)
H140.1186−0.01030.34150.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0667 (8)0.0264 (6)0.0566 (7)0.0132 (5)0.0092 (5)−0.0020 (5)
O20.0429 (6)0.0418 (6)0.0236 (5)−0.0013 (5)0.0033 (4)−0.0039 (4)
O30.0260 (5)0.0419 (6)0.0449 (6)0.0040 (4)−0.0083 (4)−0.0096 (5)
N10.0240 (6)0.0270 (6)0.0306 (6)−0.0007 (5)0.0020 (4)−0.0046 (5)
C10.0260 (7)0.0258 (7)0.0212 (6)−0.0004 (6)0.0048 (5)−0.0022 (5)
C20.0215 (6)0.0223 (7)0.0204 (6)0.0001 (5)0.0014 (5)0.0015 (5)
C30.0202 (6)0.0225 (7)0.0224 (6)0.0013 (5)−0.0008 (5)0.0007 (5)
C40.0233 (7)0.0234 (7)0.0308 (7)−0.0014 (6)0.0026 (5)0.0010 (5)
C50.0247 (7)0.0381 (8)0.0373 (7)0.0055 (6)0.0055 (6)−0.0061 (6)
C60.0321 (8)0.0299 (8)0.0377 (7)0.0080 (6)−0.0019 (6)−0.0082 (6)
C70.0309 (8)0.0269 (7)0.0395 (8)0.0019 (6)−0.0040 (6)−0.0070 (6)
C80.0215 (7)0.0253 (7)0.0368 (7)−0.0004 (6)0.0004 (5)−0.0035 (6)
C90.0222 (7)0.0183 (6)0.0255 (6)0.0010 (5)0.0011 (5)−0.0044 (5)
C100.0270 (7)0.0326 (8)0.0299 (7)0.0017 (6)0.0018 (5)0.0017 (6)
C110.0315 (8)0.0384 (8)0.0371 (8)0.0066 (7)−0.0052 (6)0.0032 (6)
C120.0202 (7)0.0360 (8)0.0540 (9)0.0061 (6)−0.0015 (6)−0.0032 (7)
C130.0274 (8)0.0412 (9)0.0500 (8)0.0009 (7)0.0126 (6)0.0048 (7)
C140.0277 (7)0.0332 (8)0.0340 (7)0.0031 (6)0.0053 (6)0.0060 (6)

Geometric parameters (Å, °)

O1—N11.2198 (13)C6—H6A0.9900
O2—N11.2258 (12)C6—H6B0.9900
O3—C41.2210 (14)C7—C81.5234 (17)
N1—C11.4865 (15)C7—H7A0.9900
C1—C21.5316 (16)C7—H7B0.9900
C1—H1A0.9900C8—H8A0.9900
C1—H1B0.9900C8—H8B0.9900
C2—C91.5192 (17)C9—C141.3888 (17)
C2—C31.5343 (16)C9—C101.3919 (16)
C2—H21.0000C10—C111.3786 (18)
C3—C41.5187 (17)C10—H100.9500
C3—C81.5442 (16)C11—C121.3770 (19)
C3—H31.0000C11—H110.9500
C4—C51.5035 (18)C12—C131.3732 (19)
C5—C61.5355 (19)C12—H120.9500
C5—H5A0.9900C13—C141.3862 (19)
C5—H5B0.9900C13—H130.9500
C6—C71.5209 (18)C14—H140.9500
O1—N1—O2123.37 (10)C7—C6—H6B109.6
O1—N1—C1118.92 (10)C5—C6—H6B109.6
O2—N1—C1117.70 (10)H6A—C6—H6B108.1
N1—C1—C2109.84 (9)C6—C7—C8112.15 (10)
N1—C1—H1A109.7C6—C7—H7A109.2
C2—C1—H1A109.7C8—C7—H7A109.2
N1—C1—H1B109.7C6—C7—H7B109.2
C2—C1—H1B109.7C8—C7—H7B109.2
H1A—C1—H1B108.2H7A—C7—H7B107.9
C9—C2—C1110.98 (10)C7—C8—C3112.33 (10)
C9—C2—C3111.39 (9)C7—C8—H8A109.1
C1—C2—C3110.85 (9)C3—C8—H8A109.1
C9—C2—H2107.8C7—C8—H8B109.1
C1—C2—H2107.8C3—C8—H8B109.1
C3—C2—H2107.8H8A—C8—H8B107.9
C4—C3—C2114.83 (9)C14—C9—C10117.75 (12)
C4—C3—C8105.55 (10)C14—C9—C2120.91 (10)
C2—C3—C8111.68 (10)C10—C9—C2121.29 (11)
C4—C3—H3108.2C11—C10—C9120.93 (12)
C2—C3—H3108.2C11—C10—H10119.5
C8—C3—H3108.2C9—C10—H10119.5
O3—C4—C5122.47 (12)C12—C11—C10120.70 (12)
O3—C4—C3123.05 (11)C12—C11—H11119.7
C5—C4—C3114.19 (11)C10—C11—H11119.7
C4—C5—C6108.84 (11)C13—C12—C11119.17 (13)
C4—C5—H5A109.9C13—C12—H12120.4
C6—C5—H5A109.9C11—C12—H12120.4
C4—C5—H5B109.9C12—C13—C14120.48 (13)
C6—C5—H5B109.9C12—C13—H13119.8
H5A—C5—H5B108.3C14—C13—H13119.8
C7—C6—C5110.30 (11)C13—C14—C9120.94 (12)
C7—C6—H6A109.6C13—C14—H14119.5
C5—C6—H6A109.6C9—C14—H14119.5
O1—N1—C1—C2−128.32 (12)C6—C7—C8—C356.07 (15)
O2—N1—C1—C252.56 (14)C4—C3—C8—C7−56.14 (13)
N1—C1—C2—C961.75 (12)C2—C3—C8—C7178.44 (10)
N1—C1—C2—C3−173.91 (9)C1—C2—C9—C14−122.22 (12)
C9—C2—C3—C4−176.37 (10)C3—C2—C9—C14113.75 (13)
C1—C2—C3—C459.53 (13)C1—C2—C9—C1060.49 (14)
C9—C2—C3—C8−56.26 (13)C3—C2—C9—C10−63.53 (15)
C1—C2—C3—C8179.64 (9)C14—C9—C10—C11−1.04 (19)
C2—C3—C4—O310.01 (17)C2—C9—C10—C11176.33 (11)
C8—C3—C4—O3−113.44 (13)C9—C10—C11—C12−0.4 (2)
C2—C3—C4—C5−176.03 (10)C10—C11—C12—C131.2 (2)
C8—C3—C4—C560.52 (13)C11—C12—C13—C14−0.6 (2)
O3—C4—C5—C6112.56 (13)C12—C13—C14—C9−0.9 (2)
C3—C4—C5—C6−61.43 (14)C10—C9—C14—C131.68 (19)
C4—C5—C6—C755.04 (14)C2—C9—C14—C13−175.70 (12)
C5—C6—C7—C8−53.99 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.573.4403 (14)146
C5—H5A···O2ii0.992.473.4312 (16)165
C8—H8A···O1iii0.992.533.3536 (16)140
C10—H10···O2i0.952.503.4289 (15)165

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5052).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Blarer, S. J., Schweizer, B. W. & Seebach, D. (1982). Helv. Chim. Acta, 161, 1637–1654.
  • Cobb, A. J. A., Shaw, D. M., Longbottom, D. A., Gold, J. B. & Ley, S. V. (2005). Org. Biomol. Chem.3, 84–96. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Juaristi, E., Beck, A. K., Hansen, J., Matt, T., Mukhopadhyay, T., Simson, M. & Seebach, D. (1993). Synthesis, pp. 1271–1290.
  • Kempf, B., Hampel, N., Ofial, A. R. & Mayr, H. (2003). Chem. Eur. J.9, 2209–2218. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev.107, 5471–5569. [PubMed]
  • Oxford Diffraction (2006). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sulzer-Mosse, S. & Alexakis, A. (2007). Chem. Commun. pp. 3123–3135. [PubMed]
  • Tsogoeva, S. B. (2007). Eur. J. Org. Chem. pp. 1701–1716.
  • Xu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007a). Chem. Commun. pp. 4393–4395. [PubMed]
  • Xu, D.-Q., Wang, B.-T., Luo, S.-P., Yue, H.-D., Wang, L.-P. & Xu, Z.-Y. (2007b). Tetrahedron Asymmetry, 18, 1788–1794.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography