PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3286–o3287.
Published online 2010 November 24. doi:  10.1107/S1600536810043849
PMCID: PMC3011462

4-Anilino-3-nitro-N-phenyl­benzamide

Abstract

In the title compound, C19H15N3O3, the anilino and benzamide rings make dihedral angles of 10.66 (16) and 50.39 (16)°, respectively, with the nitro-substituted benzene ring. The nitro group is slightly twisted by 11.49 (17)° with respect to the attached benzene ring. There is an intra­molecular N—H(...)O hydrogen bond forming an S(6) ring. In the crystal, weak inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a chain parallel to the b axis. Futhermore, weak slipped π–π inter­actions [centroid–centroid distance = 3.819 (2) Å, inter­planar distance = 3.567 Å and offset angle [how is the offset angle defined?] = 21°] between the anilino ring and its symmetry-related counterpart may help to stabilize the packing.

Related literature

For the synthesis of the title compound, see: Schelz & Inst (1978 [triangle]). For related structures, see: McWilliam et al. (2001 [triangle]); Li, Liu et al. (2009 [triangle]); Li, Wu et al. (2009 [triangle]). For discussion of hydrogen bonding, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3286-scheme1.jpg

Experimental

Crystal data

  • C19H15N3O3
  • M r = 333.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3286-efi1.jpg
  • a = 7.7930 (16) Å
  • b = 8.1580 (16) Å
  • c = 12.788 (3) Å
  • α = 84.73 (3)°
  • β = 83.82 (3)°
  • γ = 73.58 (3)°
  • V = 773.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.971, T max = 0.990
  • 3037 measured reflections
  • 2809 independent reflections
  • 1913 reflections with I > 2σ(I)
  • R int = 0.069
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.173
  • S = 1.07
  • 2809 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043849/dn2614sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043849/dn2614Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Shan Liu from Nanjing University of Technology for useful discussion and the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The molecule of the title compound, C19H15N3O3, is markedly non-planar, the benzamide (C1 to C6) and the phenyl amino (C14 to C19) rings make dihedral of 10.66 (16)° and 50.39 (16)° respectively, with the nitro substituted phenyl ring (C8 to C13) (Fig. 1). The nitro group is slightly twisted with respect to the phenyl ring by 11.49 (17)°. The bond lengths and bond angles agree with related structures (Li, Liu et al., 2009; Li, Wu et al., 2009; McWilliam et al., 2001).

There is an intramolecular N-H···O hydrogen bond forming an S(6) ring (Etter et al., 1990; Bernstein et al., 1995) whereas weak intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into a chain parallel to the b axis (Table 1, Fig. 2). Futhermore, weak slippest π-π interaction (centroid to centroid = 3.819 (2)Å, interplanar distance = 3.567 and offset angle of 21°) between the C14–C19 phenyl ring and its symmetry related (symmetry code: (i) 1-x, 1-y, 2-z) may help in stabilizing the packing.

Experimental

4-chloro-3-nitrobenzamide (4.5 g, 0.022 mol)was heat in 10 ml fresh distilled aniline for 18 h at 403 K. After reaction completed (TLC control) was added 50 ml e thanol, at room temperature. The red precipitate was sucked, washed with cold ethanol(2*15 ml), dried over sodium sulfate and gave 5.5 g(74%) (Schelz & Inst,1978). Pure compound (I) was obstained by crystallizing from methanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an methanol solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing view of (I) showing the infinite chain formed by N-H···O and C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x, 1+y, ...

Crystal data

C19H15N3O3Z = 2
Mr = 333.34F(000) = 348
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7930 (16) ÅCell parameters from 25 reflections
b = 8.1580 (16) Åθ = 9–13°
c = 12.788 (3) ŵ = 0.10 mm1
α = 84.73 (3)°T = 293 K
β = 83.82 (3)°Block, colourless
γ = 73.58 (3)°0.30 × 0.20 × 0.10 mm
V = 773.7 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer1913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
graphiteθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 0→9
Absorption correction: ψ scan (North et al., 1968)k = −9→9
Tmin = 0.971, Tmax = 0.990l = −15→15
3037 measured reflections3 standard reflections every 200 reflections
2809 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0726P)2 + 0.3362P] where P = (Fo2 + 2Fc2)/3
2809 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1624 (3)0.4949 (3)0.34191 (17)0.0597 (7)
O20.4401 (3)−0.0652 (3)0.68488 (17)0.0595 (7)
O30.3047 (3)−0.0231 (3)0.54356 (17)0.0552 (6)
N10.1661 (3)0.7456 (3)0.40167 (18)0.0439 (6)
H10.18920.78980.45520.053*
N20.3633 (3)0.0321 (3)0.61399 (18)0.0408 (6)
N30.4299 (3)0.2000 (3)0.79278 (18)0.0442 (6)
H30.48100.09220.78920.053*
C10.0361 (4)0.8190 (4)0.2304 (2)0.0442 (7)
H1B0.02930.70780.22650.053*
C2−0.0237 (4)0.9424 (4)0.1516 (2)0.0525 (8)
H2A−0.07420.91430.09550.063*
C3−0.0102 (5)1.1066 (4)0.1543 (3)0.0562 (9)
H3B−0.04731.18750.09930.067*
C40.0583 (5)1.1499 (4)0.2389 (3)0.0535 (8)
H4A0.06631.26090.24200.064*
C50.1152 (4)1.0284 (4)0.3193 (2)0.0486 (8)
H5A0.16011.05880.37690.058*
C60.1066 (4)0.8620 (4)0.3157 (2)0.0386 (7)
C70.1915 (4)0.5740 (3)0.4114 (2)0.0377 (7)
C80.2585 (4)0.4838 (3)0.5121 (2)0.0372 (7)
C90.2942 (4)0.5618 (4)0.5980 (2)0.0436 (7)
H9A0.27940.67940.59320.052*
C100.3501 (4)0.4676 (4)0.6883 (2)0.0431 (7)
H10A0.37210.52330.74350.052*
C110.3756 (4)0.2896 (3)0.7005 (2)0.0364 (6)
C120.3430 (4)0.2137 (3)0.6127 (2)0.0361 (6)
C130.2860 (4)0.3091 (3)0.5223 (2)0.0372 (6)
H13A0.26540.25390.46640.045*
C140.4108 (4)0.2654 (3)0.8927 (2)0.0371 (7)
C150.2639 (4)0.3943 (4)0.9262 (2)0.0450 (7)
H15A0.17580.44640.88090.054*
C160.2481 (4)0.4458 (4)1.0272 (2)0.0537 (8)
H16A0.14940.53401.04900.064*
C170.3752 (5)0.3695 (5)1.0967 (2)0.0570 (9)
H17A0.36230.40451.16500.068*
C180.5225 (5)0.2398 (5)1.0630 (3)0.0563 (9)
H18A0.60980.18691.10880.068*
C190.5402 (4)0.1891 (4)0.9619 (2)0.0454 (7)
H19A0.64010.10250.93970.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0943 (18)0.0402 (12)0.0486 (13)−0.0195 (12)−0.0183 (12)−0.0065 (10)
O20.0869 (18)0.0349 (12)0.0525 (13)−0.0051 (11)−0.0210 (12)0.0004 (10)
O30.0802 (17)0.0388 (12)0.0546 (14)−0.0245 (11)−0.0164 (12)−0.0064 (10)
N10.0598 (16)0.0353 (13)0.0422 (14)−0.0165 (12)−0.0180 (12)−0.0038 (11)
N20.0497 (15)0.0350 (13)0.0375 (13)−0.0117 (11)−0.0010 (12)−0.0049 (11)
N30.0540 (16)0.0363 (13)0.0406 (14)−0.0066 (11)−0.0099 (12)−0.0061 (11)
C10.0492 (18)0.0436 (17)0.0429 (17)−0.0158 (14)−0.0079 (14)−0.0048 (13)
C20.055 (2)0.058 (2)0.0457 (18)−0.0143 (16)−0.0132 (15)−0.0045 (15)
C30.064 (2)0.0492 (19)0.052 (2)−0.0109 (16)−0.0117 (16)0.0071 (15)
C40.065 (2)0.0389 (17)0.059 (2)−0.0170 (16)−0.0149 (17)0.0041 (15)
C50.059 (2)0.0436 (17)0.0498 (18)−0.0203 (15)−0.0182 (15)−0.0015 (14)
C60.0376 (15)0.0391 (16)0.0409 (16)−0.0136 (13)−0.0034 (12)−0.0023 (12)
C70.0404 (16)0.0384 (16)0.0366 (15)−0.0134 (13)−0.0020 (12)−0.0084 (12)
C80.0412 (16)0.0349 (15)0.0379 (15)−0.0145 (12)−0.0020 (13)−0.0029 (12)
C90.0564 (19)0.0315 (15)0.0464 (17)−0.0179 (14)0.0005 (14)−0.0080 (13)
C100.0555 (19)0.0429 (17)0.0384 (16)−0.0231 (14)−0.0077 (14)−0.0070 (13)
C110.0345 (15)0.0395 (15)0.0358 (15)−0.0110 (12)0.0002 (12)−0.0063 (12)
C120.0391 (16)0.0310 (14)0.0385 (15)−0.0118 (12)0.0032 (12)−0.0057 (12)
C130.0437 (16)0.0351 (15)0.0360 (15)−0.0135 (12)−0.0043 (12)−0.0094 (12)
C140.0410 (16)0.0370 (15)0.0372 (15)−0.0165 (13)−0.0052 (13)−0.0013 (12)
C150.0409 (17)0.0485 (18)0.0460 (18)−0.0114 (14)−0.0071 (14)−0.0048 (14)
C160.052 (2)0.059 (2)0.0501 (19)−0.0150 (16)0.0036 (16)−0.0168 (16)
C170.072 (2)0.072 (2)0.0406 (18)−0.039 (2)−0.0055 (17)−0.0085 (16)
C180.058 (2)0.070 (2)0.0489 (19)−0.0291 (18)−0.0169 (16)0.0079 (17)
C190.0445 (17)0.0489 (18)0.0453 (17)−0.0165 (14)−0.0077 (14)0.0009 (14)

Geometric parameters (Å, °)

O1—C71.220 (3)C7—C81.492 (4)
O2—N21.236 (3)C8—C131.377 (4)
O3—N21.225 (3)C8—C91.408 (4)
N1—C71.353 (3)C9—C101.368 (4)
N1—C61.412 (3)C9—H9A0.9300
N1—H10.8600C10—C111.405 (4)
N2—C121.443 (3)C10—H10A0.9300
N3—C111.371 (3)C11—C121.410 (4)
N3—C141.407 (3)C12—C131.374 (4)
N3—H30.8600C13—H13A0.9300
C1—C21.377 (4)C14—C151.377 (4)
C1—C61.387 (4)C14—C191.387 (4)
C1—H1B0.9300C15—C161.377 (4)
C2—C31.377 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.378 (4)
C3—C41.372 (4)C16—H16A0.9300
C3—H3B0.9300C17—C181.383 (5)
C4—C51.378 (4)C17—H17A0.9300
C4—H4A0.9300C18—C191.374 (4)
C5—C61.383 (4)C18—H18A0.9300
C5—H5A0.9300C19—H19A0.9300
C7—N1—C6128.9 (2)C10—C9—C8121.1 (3)
C7—N1—H1115.6C10—C9—H9A119.5
C6—N1—H1115.6C8—C9—H9A119.5
O3—N2—O2121.0 (2)C9—C10—C11122.4 (3)
O3—N2—C12119.0 (2)C9—C10—H10A118.8
O2—N2—C12120.0 (2)C11—C10—H10A118.8
C11—N3—C14127.0 (2)N3—C11—C10120.6 (2)
C11—N3—H3116.5N3—C11—C12123.9 (3)
C14—N3—H3116.5C10—C11—C12115.5 (3)
C2—C1—C6119.4 (3)C13—C12—C11121.8 (2)
C2—C1—H1B120.3C13—C12—N2116.5 (2)
C6—C1—H1B120.3C11—C12—N2121.7 (2)
C1—C2—C3121.3 (3)C12—C13—C8122.0 (2)
C1—C2—H2A119.4C12—C13—H13A119.0
C3—C2—H2A119.4C8—C13—H13A119.0
C4—C3—C2119.4 (3)C15—C14—C19119.1 (3)
C4—C3—H3B120.3C15—C14—N3122.6 (3)
C2—C3—H3B120.3C19—C14—N3118.2 (3)
C3—C4—C5119.8 (3)C16—C15—C14119.7 (3)
C3—C4—H4A120.1C16—C15—H15A120.1
C5—C4—H4A120.1C14—C15—H15A120.1
C4—C5—C6121.1 (3)C15—C16—C17121.5 (3)
C4—C5—H5A119.5C15—C16—H16A119.3
C6—C5—H5A119.5C17—C16—H16A119.3
C5—C6—C1118.9 (3)C16—C17—C18118.7 (3)
C5—C6—N1117.6 (2)C16—C17—H17A120.6
C1—C6—N1123.4 (2)C18—C17—H17A120.6
O1—C7—N1122.4 (3)C19—C18—C17120.1 (3)
O1—C7—C8120.9 (3)C19—C18—H18A119.9
N1—C7—C8116.7 (2)C17—C18—H18A119.9
C13—C8—C9117.2 (3)C18—C19—C14120.8 (3)
C13—C8—C7117.0 (2)C18—C19—H19A119.6
C9—C8—C7125.8 (2)C14—C19—H19A119.6
C6—C1—C2—C31.9 (5)N3—C11—C12—C13179.0 (3)
C1—C2—C3—C4−2.3 (5)C10—C11—C12—C13−1.4 (4)
C2—C3—C4—C51.0 (5)N3—C11—C12—N20.6 (4)
C3—C4—C5—C60.8 (5)C10—C11—C12—N2−179.8 (2)
C4—C5—C6—C1−1.3 (5)O3—N2—C12—C13−10.7 (4)
C4—C5—C6—N1−179.4 (3)O2—N2—C12—C13168.6 (3)
C2—C1—C6—C5−0.1 (4)O3—N2—C12—C11167.7 (3)
C2—C1—C6—N1178.0 (3)O2—N2—C12—C11−12.9 (4)
C7—N1—C6—C5−171.2 (3)C11—C12—C13—C80.4 (4)
C7—N1—C6—C110.7 (5)N2—C12—C13—C8178.8 (2)
C6—N1—C7—O1−0.6 (5)C9—C8—C13—C121.0 (4)
C6—N1—C7—C8179.1 (3)C7—C8—C13—C12−178.3 (2)
O1—C7—C8—C130.2 (4)C11—N3—C14—C1535.4 (4)
N1—C7—C8—C13−179.5 (3)C11—N3—C14—C19−148.7 (3)
O1—C7—C8—C9−179.0 (3)C19—C14—C15—C160.3 (4)
N1—C7—C8—C91.2 (4)N3—C14—C15—C16176.2 (3)
C13—C8—C9—C10−1.3 (4)C14—C15—C16—C17−0.9 (5)
C7—C8—C9—C10177.9 (3)C15—C16—C17—C180.8 (5)
C8—C9—C10—C110.2 (5)C16—C17—C18—C190.0 (5)
C14—N3—C11—C1022.4 (4)C17—C18—C19—C14−0.5 (5)
C14—N3—C11—C12−158.0 (3)C15—C14—C19—C180.4 (4)
C9—C10—C11—N3−179.2 (3)N3—C14—C19—C18−175.6 (3)
C9—C10—C11—C121.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.393.198 (3)156
N3—H3···O20.862.042.649 (3)127
C5—H5A···O3i0.932.473.305 (4)150
C9—H9A···O3i0.932.513.416 (4)165
C1—H1B···O10.932.262.851 (4)121

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2614).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, H.-Y., Wu, Y.-Z., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o1381. [PMC free article] [PubMed]
  • Li, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91. [PMC free article] [PubMed]
  • McWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946–948. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Schelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452–2462.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography