PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1501–m1502.
Published online 2010 November 6. doi:  10.1107/S1600536810044053
PMCID: PMC3011459

Poly[bis­[μ-1,4-bis­(1H-imidazol-5-yl)benzene-κ2 N 3:N 3′]diformatomanganese(II)]

Abstract

In the title compound, [Mn(CHO2)2(C12H10N4)2]n, the MnII atom and the benzene ring of the ligand lie on an inversion centers. The MnII atom has an octa­hedral coordination environment composed of four N atoms from two different symmetry-related N-heterocyclic ligands forming the basal plane, and two O atoms from symmetry-related formate anions occupying the apical positions. The title compound forms a two-dimensional (4,4) net parallel to (100) with all the MnII atoms lying on a plane. The crystal structure is consolidated by inter­molecular N—H(...)O hydrogen bonds..

Related literature

For related literature on transition metal complex assembly, see: Kitagawa & Kondo (1998 [triangle]). For related literature on novel coordination networks belonging to entangled systems, see: Batten & Robson (1998 [triangle]); Hoskins et al. (1997a [triangle],b [triangle]). For a related MnII complex, see: Zhao et al. (2009 [triangle]); Zhu et al. (2010 [triangle]). For three-dimensional structures, see: Tian et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1501-scheme1.jpg

Experimental

Crystal data

  • [Mn(CHO2)2(C12H10N4)2]
  • M r = 565.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1501-efi1.jpg
  • a = 7.3240 (8) Å
  • b = 12.1313 (13) Å
  • c = 14.1802 (15) Å
  • β = 100.704 (2)°
  • V = 1238.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 293 K
  • 0.21 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.887, T max = 0.933
  • 6495 measured reflections
  • 2420 independent reflections
  • 2196 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.101
  • S = 1.06
  • 2420 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044053/bx2313sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044053/bx2313Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (grant No. Kj2009A047Zc), the Construct Program of the Key Discipline in Henan Province, Luoyang Bureau of Science and Technology (grant No. 2009 K J29) and the Research Award Fund for Outstanding Young Teachers of Henan Province (2008).

supplementary crystallographic information

Comment

Recently, a great deal of interest in transition metal complex assembly has been devoted to the development of rational synthetic routes to novel crystal frameworks, due to their potential applications in many areas (Kitagawa et al., 1998). So far large quantities of novel coordination networks belonging to entangled systems have been reported in the literature (Batten et al., 1998). It has been demostrated that the flexible bridging ligand can easily construct entangled systems. For example, 1,4-bix(imidazol-1-yl-methyl) benzene (bix) formed an infinite polyrotaxane network of [Ag2(bix)3(NO3)2] by reactions with silver nitrate (Hoskins et al., 1997a) and gave a two-dimensional interpenetrated network of [Zn(bix)2(NO3)2.4.5H2O] by reactions with zinc nitrate which has both polyrotaxane and polycatenane characters (Hoskins et al., 1997b). As an extension of above work, we report a new entangled metal complex [Mn(C24H20N8)2(HCOO)2]n (I) based on rigid 1,4-di(1H-imidazol-4-yl)benzene ligand (L) and metal MnII salts. In the title compound, the Mn II atom and the ring benzene of the ligand are lies on inversion center. The MnII has an octahedral coordination environment surrounded by four nitrogen atoms from two different N-heterocyclic ligands symmetry-related forming the basal plane and two oxygen donors from one formate anion symmetry-related occupying the apical positions (Fig. 1). The Mn—N distances are comparable to those found in other crystallographically characterized MnII complex (Zhao et al., 2009) and Mn—O distance is coincident with another MnII complex (Zhu et al., 2010). The title compound form two-dimensional (4,4) net and its building unit is [Mn(L)]. The MnII are connected to a 1D linear chain along b-axis. The ligand, L, link MnII ions in adjacent chains by the same mode as described above, which makes the MnII ions links another 1D chain along c-axis. Therefore, the title compound is further connect to a 2D infinite strucure in bc plane, Fig. 2. The void spaces within the [Mn(L)2]n coordination polymer layers permit mutual inclined two parallel sets of layers to angle into three dimensional framework (Tian et al., 2007) (Fig. 3). The crystal structure of the title compound is stabilized by two intermolecular N—H···O interactions with average H···O distances 2.00 Å and N—H···O angles in the range 151-165°.

Experimental

All reagents and solvents were used as obtained commercially without further purification. A mixture containing MnCl2.4H2O (19.8 mg, 0.05 mmol), L (27.6 mg, 0.1 mmol), DMF (N:N'- dimethylformamide, 1 mL), 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 393 K for 72 h. After cooling to room temperature within 12 h, block brown crystals of (I) suitable for X-ray diffraction analysis were obtained in 69% Yield.

Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C). The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.86 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: (i) 1-x, 1-y, 1-z.
Fig. 2.
Two-dimensional (4,4) rectangular grid [Mn(L)2]n coordination polymer layer motif along the bc plane of the compound (I).
Fig. 3.
The three-dimensional structure built from two-dimension mutual inclined interpenetration of the compound (I).

Crystal data

[Mn(CHO2)2(C24H20N8)2]F(000) = 582
Mr = 565.46Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3510 reflections
a = 7.3240 (8) Åθ = 2.2–28.2°
b = 12.1313 (13) ŵ = 0.59 mm1
c = 14.1802 (15) ÅT = 293 K
β = 100.704 (2)°Block, brown
V = 1238.0 (2) Å30.21 × 0.16 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer2420 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→4
Tmin = 0.887, Tmax = 0.933k = −14→14
6495 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0581P)2 + 0.230P] where P = (Fo2 + 2Fc2)/3
2420 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7024 (3)0.61227 (17)0.34180 (14)0.0363 (5)
H10.76490.66130.38690.044*
C20.5906 (3)0.53538 (16)0.20304 (13)0.0292 (4)
C30.5424 (3)0.47633 (17)0.27654 (14)0.0319 (5)
H30.47210.41200.26900.038*
C40.5462 (3)0.51810 (15)0.09923 (14)0.0265 (4)
C50.5767 (3)0.59952 (16)0.03487 (13)0.0289 (4)
H50.62840.66660.05760.035*
C60.5306 (3)0.58109 (16)−0.06262 (13)0.0298 (4)
H60.55140.6364−0.10480.036*
C70.2276 (3)0.66265 (16)0.35944 (15)0.0386 (5)
H70.24590.62340.30560.046*
C80.1345 (3)0.79075 (15)0.44854 (14)0.0292 (4)
C90.2315 (3)0.71098 (15)0.50414 (14)0.0323 (4)
H90.25410.71050.57090.039*
C100.0609 (3)0.89682 (15)0.47356 (14)0.0290 (4)
C11−0.0078 (3)0.97491 (17)0.40435 (16)0.0351 (5)
H11−0.01330.95880.33980.042*
C12−0.0679 (3)1.07637 (16)0.43069 (15)0.0355 (5)
H12−0.11391.12760.38340.043*
C130.1608 (3)0.36826 (16)0.37714 (14)0.0339 (5)
H130.07690.42150.38930.041*
Mn10.50000.50000.50000.02250 (15)
N10.6124 (3)0.52515 (14)0.36355 (12)0.0330 (4)
N20.6934 (3)0.62227 (14)0.24675 (11)0.0351 (4)
H20.74310.67380.21830.042*
N30.2911 (2)0.63150 (13)0.44833 (12)0.0317 (4)
N40.1335 (2)0.75759 (14)0.35583 (12)0.0350 (4)
H40.08170.79170.30470.042*
O10.3183 (2)0.37154 (11)0.42634 (10)0.0378 (4)
O20.1041 (2)0.30061 (13)0.31300 (11)0.0461 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0449 (12)0.0407 (11)0.0220 (10)−0.0042 (10)0.0024 (9)−0.0056 (8)
C20.0326 (10)0.0325 (10)0.0223 (10)0.0011 (8)0.0050 (8)−0.0028 (8)
C30.0420 (12)0.0318 (10)0.0222 (10)−0.0031 (9)0.0068 (9)−0.0030 (8)
C40.0282 (10)0.0307 (9)0.0206 (9)0.0025 (8)0.0048 (8)−0.0009 (7)
C50.0344 (11)0.0270 (9)0.0245 (10)−0.0020 (8)0.0035 (8)−0.0031 (7)
C60.0363 (11)0.0309 (10)0.0225 (9)−0.0007 (8)0.0061 (8)0.0037 (7)
C70.0481 (13)0.0319 (11)0.0323 (11)0.0115 (10)−0.0014 (9)−0.0050 (9)
C80.0278 (10)0.0256 (9)0.0326 (10)0.0020 (8)0.0016 (8)−0.0003 (8)
C90.0405 (11)0.0295 (10)0.0261 (10)0.0054 (9)0.0037 (8)0.0000 (8)
C100.0247 (9)0.0247 (9)0.0367 (11)0.0029 (7)0.0031 (8)0.0002 (8)
C110.0402 (12)0.0338 (10)0.0305 (10)0.0067 (9)0.0044 (9)−0.0008 (8)
C120.0394 (12)0.0306 (10)0.0346 (11)0.0096 (9)0.0024 (9)0.0069 (8)
C130.0388 (12)0.0284 (10)0.0331 (11)0.0017 (9)0.0029 (9)−0.0045 (8)
Mn10.0303 (3)0.0201 (2)0.0153 (2)0.00383 (15)−0.00031 (16)−0.00102 (13)
N10.0423 (10)0.0362 (9)0.0204 (8)−0.0006 (8)0.0059 (7)−0.0017 (7)
N20.0465 (10)0.0377 (9)0.0210 (8)−0.0095 (8)0.0056 (7)−0.0013 (7)
N30.0395 (10)0.0266 (8)0.0267 (8)0.0088 (7)0.0000 (7)−0.0006 (6)
N40.0411 (10)0.0305 (9)0.0285 (9)0.0102 (7)−0.0062 (7)0.0025 (7)
O10.0427 (9)0.0303 (8)0.0348 (8)−0.0038 (6)−0.0075 (7)−0.0042 (6)
O20.0523 (10)0.0427 (9)0.0351 (9)−0.0002 (7)−0.0131 (7)−0.0127 (7)

Geometric parameters (Å, °)

C1—N11.312 (3)C9—N31.369 (2)
C1—N21.343 (3)C9—H90.9300
C1—H10.9300C10—C12ii1.388 (3)
C2—C31.364 (3)C10—C111.389 (3)
C2—N21.375 (3)C11—C121.382 (3)
C2—C41.462 (3)C11—H110.9300
C3—N11.379 (3)C12—C10ii1.388 (3)
C3—H30.9300C12—H120.9300
C4—C6i1.388 (3)C13—O11.233 (2)
C4—C51.391 (3)C13—O21.238 (2)
C5—C61.379 (3)C13—H130.9300
C5—H50.9300Mn1—O12.1848 (13)
C6—C4i1.388 (3)Mn1—O1iii2.1848 (13)
C6—H60.9300Mn1—N3iii2.2376 (16)
C7—N31.315 (3)Mn1—N32.2376 (16)
C7—N41.338 (2)Mn1—N12.2597 (17)
C7—H70.9300Mn1—N1iii2.2597 (17)
C8—C91.362 (3)N2—H20.8600
C8—N41.373 (3)N4—H40.8600
C8—C101.464 (3)
N1—C1—N2112.07 (18)C11—C12—H12119.4
N1—C1—H1124.0C10ii—C12—H12119.4
N2—C1—H1124.0O1—C13—O2126.0 (2)
C3—C2—N2104.84 (17)O1—C13—H13117.0
C3—C2—C4130.79 (19)O2—C13—H13117.0
N2—C2—C4124.36 (17)O1—Mn1—O1iii180.0
C2—C3—N1110.64 (18)O1—Mn1—N3iii88.09 (6)
C2—C3—H3124.7O1iii—Mn1—N3iii91.91 (6)
N1—C3—H3124.7O1—Mn1—N391.91 (6)
C6i—C4—C5118.28 (17)O1iii—Mn1—N388.09 (6)
C6i—C4—C2119.98 (17)N3iii—Mn1—N3180.00 (8)
C5—C4—C2121.74 (17)O1—Mn1—N188.47 (6)
C6—C5—C4120.23 (18)O1iii—Mn1—N191.53 (6)
C6—C5—H5119.9N3iii—Mn1—N192.34 (6)
C4—C5—H5119.9N3—Mn1—N187.66 (6)
C5—C6—C4i121.50 (17)O1—Mn1—N1iii91.53 (6)
C5—C6—H6119.3O1iii—Mn1—N1iii88.47 (6)
C4i—C6—H6119.3N3iii—Mn1—N1iii87.66 (6)
N3—C7—N4111.81 (18)N3—Mn1—N1iii92.34 (6)
N3—C7—H7124.1N1—Mn1—N1iii180.0
N4—C7—H7124.1C1—N1—C3104.77 (17)
C9—C8—N4104.81 (16)C1—N1—Mn1126.06 (13)
C9—C8—C10131.31 (18)C3—N1—Mn1125.06 (14)
N4—C8—C10123.55 (17)C1—N2—C2107.68 (16)
C8—C9—N3110.71 (17)C1—N2—H2126.2
C8—C9—H9124.6C2—N2—H2126.2
N3—C9—H9124.6C7—N3—C9104.94 (16)
C12ii—C10—C11118.30 (18)C7—N3—Mn1128.10 (14)
C12ii—C10—C8119.65 (17)C9—N3—Mn1125.79 (13)
C11—C10—C8121.96 (19)C7—N4—C8107.72 (17)
C12—C11—C10120.5 (2)C7—N4—H4126.1
C12—C11—H11119.7C8—N4—H4126.1
C10—C11—H11119.7C13—O1—Mn1135.75 (13)
C11—C12—C10ii121.16 (18)
N2—C2—C3—N10.3 (2)O1iii—Mn1—N1—C3−172.33 (16)
C4—C2—C3—N1−178.5 (2)N3iii—Mn1—N1—C395.69 (16)
C3—C2—C4—C6i−12.5 (3)N3—Mn1—N1—C3−84.31 (16)
N2—C2—C4—C6i168.97 (19)N1—C1—N2—C2−0.1 (2)
C3—C2—C4—C5166.7 (2)C3—C2—N2—C1−0.1 (2)
N2—C2—C4—C5−11.9 (3)C4—C2—N2—C1178.79 (19)
C6i—C4—C5—C60.2 (3)N4—C7—N3—C90.7 (2)
C2—C4—C5—C6−178.98 (18)N4—C7—N3—Mn1−167.33 (14)
C4—C5—C6—C4i−0.2 (3)C8—C9—N3—C7−0.9 (2)
N4—C8—C9—N30.8 (2)C8—C9—N3—Mn1167.49 (13)
C10—C8—C9—N3−172.7 (2)O1—Mn1—N3—C7−63.64 (19)
C9—C8—C10—C12ii−7.5 (3)O1iii—Mn1—N3—C7116.36 (19)
N4—C8—C10—C12ii−179.89 (19)N1—Mn1—N3—C724.74 (18)
C9—C8—C10—C11169.0 (2)N1iii—Mn1—N3—C7−155.26 (18)
N4—C8—C10—C11−3.4 (3)O1—Mn1—N3—C9130.62 (16)
C12ii—C10—C11—C12−0.2 (3)O1iii—Mn1—N3—C9−49.38 (16)
C8—C10—C11—C12−176.81 (19)N1—Mn1—N3—C9−140.99 (17)
C10—C11—C12—C10ii0.3 (4)N1iii—Mn1—N3—C939.01 (17)
N2—C1—N1—C30.3 (2)N3—C7—N4—C8−0.3 (2)
N2—C1—N1—Mn1−157.68 (15)C9—C8—N4—C7−0.3 (2)
C2—C3—N1—C1−0.3 (2)C10—C8—N4—C7173.77 (19)
C2—C3—N1—Mn1157.90 (14)O2—C13—O1—Mn1151.13 (17)
O1—Mn1—N1—C1161.35 (18)N3iii—Mn1—O1—C13178.4 (2)
O1iii—Mn1—N1—C1−18.65 (18)N3—Mn1—O1—C13−1.6 (2)
N3iii—Mn1—N1—C1−110.62 (18)N1—Mn1—O1—C13−89.2 (2)
N3—Mn1—N1—C169.38 (18)N1iii—Mn1—O1—C1390.8 (2)
O1—Mn1—N1—C37.67 (16)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2iv0.862.002.840 (2)165
N4—H4···O2v0.861.952.736 (2)151

Symmetry codes: (iv) −x+1, y+1/2, −z+1/2; (v) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2313).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hoskins, B. F., Robson, R. & Slizys, D. A. (1997a). Angew. Chem. Int. Ed.36, 2336–2338.
  • Hoskins, B. F., Robson, R. & Slizys, D. A. (1997b). J. Am. Chem. Soc.119, 2952–2953.
  • Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.
  • Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, Z. F., Lin, J. G., Su, Y., Wen, L. L., Liu, Y. M., Zhu, H. Z. & Meng, Q. J. (2007). Cryst. Growth Des.7, 1863–1867.
  • Zhao, J., Zheng, X.-G. & Hu, Z.-Z. (2009). Acta Cryst. E65, m1642. [PMC free article] [PubMed]
  • Zhu, L., Wang, D. & Xu, H. (2010). Acta Cryst. E66, m513. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography