PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3076.
Published online 2010 November 6. doi:  10.1107/S1600536810044478
PMCID: PMC3011452

N-Benzyl­pyridin-2-amine

Abstract

In the crystal of the title compound, C12H12N2, inter­molecular N—H(...)N hydrogen bonds form rings of graph-set motif R 2 2(8) and C—H(...)π inter­actions further consolidate the dimers. Neighbouring dimers are further connected into a three-dimensional network by C—H(...)π inter­actions. The benzyl and pyridyl rings form a dihedral angle of 67.2 (1)°

Related literature

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002 [triangle]). For related structures, see: Davies et al. (2001 [triangle]); Wan et al. (2004 [triangle]); Zhou & Richeson (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995 [triangle]). For another report on the structure of N-benzyl­pyridin-2-amine, see: Wang & Zhao (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3076-scheme1.jpg

Experimental

Crystal data

  • C12H12N2
  • M r = 184.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3076-efi1.jpg
  • a = 5.9014 (16) Å
  • b = 8.025 (2) Å
  • c = 10.561 (3) Å
  • α = 95.471 (4)°
  • β = 91.244 (4)°
  • γ = 94.779 (3)°
  • V = 495.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 296 K
  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • 2551 measured reflections
  • 1762 independent reflections
  • 1387 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.115
  • S = 1.07
  • 1762 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044478/rz2510sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044478/rz2510Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Zhongshan Polytechnic for supporting this work.

supplementary crystallographic information

Comment

The design and construction of metal-organic frameworks (MOFs) is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The 2-benzylaminopyridine ligand possessing two nitrogen donors to coordinate to metal ions, provides unique opportunities for the construction of various coordination networks. Recently, some complexes based on this ligand have been reported (Davies et al., 2001; Wan et al., 2004; Zhou & Richeson, 1995). When reacted with Ce(NO3)3 under hydrothermal condition, we isolated single crystals of the 2-benzylaminopyridine ligand, whose structure is reported herein.

The structure of the title compound is depicted in Fig. 1. The benzyl and the pyridyl rings are not coplanar and form a dihedral angle of 67.2 (1)°. The C—C and C—N bond lengths show normal values (Allen et al., 1987). Intermolecular N—H···N hydrogen bonds (graph set motif R22(8); Bernstein et al., 1995) involving a centrosymmetrically related pair of molecules gives rise to a dimer, which is also stabilized by C—H···π stacking interactions (Table 1). C—H···π stacking interactions between neighbouring dimers further extend the structure to form a three-dimensional supramolecular network (Fig. 2).

Experimental

A mixture of Ce(NO3)3.6H2O (0.163 g, 0.5 mmol), 2-benzylaminopyridine (0.092 g, 0.5 mmol), and H2O (10 mL) was sealed in a 15 mL Teflon-lined reactor, which was heated in an oven to 423 K for 24 h and then cooled to room temperature at a rate of 5 Kh-1. Colourless crystals were obtained in a yield of 58% based on 2-benzylaminopyridine.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93-0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom numbering scheme and 50% probability displacement ellipsoids.
Fig. 2.
View of the three-dimensional structure of the title compound. Hydrogen bonds and C—H···π interactions are shown as dased lines.

Crystal data

C12H12N2Z = 2
Mr = 184.24F(000) = 196
Triclinic, P1Dx = 1.234 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9014 (16) ÅCell parameters from 3415 reflections
b = 8.025 (2) Åθ = 1.2–28.0°
c = 10.561 (3) ŵ = 0.07 mm1
α = 95.471 (4)°T = 296 K
β = 91.244 (4)°Block, colourless
γ = 94.779 (3)°0.23 × 0.20 × 0.19 mm
V = 495.9 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer1387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
graphiteθmax = 25.3°, θmin = 1.9°
[var phi] and ω scansh = −6→7
2551 measured reflectionsk = −9→9
1762 independent reflectionsl = −9→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0576P)2 + 0.0854P] where P = (Fo2 + 2Fc2)/3
1762 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.1362 (3)0.24905 (19)0.36541 (15)0.0350 (4)
H1−0.24270.19090.41220.042*
C20.0725 (3)0.30933 (18)0.42172 (14)0.0308 (4)
C30.2280 (3)0.39773 (19)0.34991 (15)0.0357 (4)
H30.36890.43960.38600.043*
C40.1748 (3)0.4236 (2)0.22596 (16)0.0397 (4)
H40.27980.48320.17930.048*
C5−0.0331 (3)0.3616 (2)0.17061 (16)0.0408 (4)
H5−0.06800.37880.08680.049*
C6−0.1889 (3)0.2740 (2)0.24050 (16)0.0403 (4)
H6−0.32920.23170.20380.048*
C70.1283 (3)0.2820 (2)0.55703 (15)0.0359 (4)
H7A0.16170.38970.60650.043*
H7B−0.00220.22420.59320.043*
C80.4265 (3)0.15939 (18)0.67594 (14)0.0301 (4)
C90.3600 (3)0.23242 (19)0.79450 (14)0.0353 (4)
H90.23600.29680.79980.042*
C100.4814 (3)0.2067 (2)0.90146 (15)0.0412 (4)
H100.44060.25450.98050.049*
C110.6648 (3)0.1099 (2)0.89304 (15)0.0397 (4)
H110.75070.09300.96490.048*
C120.7150 (3)0.03973 (19)0.77449 (15)0.0359 (4)
H120.8367−0.02690.76830.043*
N10.6010 (2)0.06064 (16)0.66736 (12)0.0334 (3)
N20.3221 (2)0.18353 (16)0.56430 (12)0.0355 (3)
H20.37340.13840.49470.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0330 (9)0.0302 (8)0.0414 (9)0.0009 (6)0.0061 (7)0.0020 (7)
C20.0328 (8)0.0249 (7)0.0354 (8)0.0081 (6)0.0040 (6)0.0010 (6)
C30.0314 (9)0.0348 (9)0.0405 (9)0.0005 (7)0.0013 (7)0.0026 (7)
C40.0443 (10)0.0352 (9)0.0403 (9)0.0000 (7)0.0100 (7)0.0075 (7)
C50.0503 (11)0.0386 (9)0.0340 (9)0.0075 (8)−0.0017 (7)0.0041 (7)
C60.0358 (9)0.0403 (9)0.0431 (10)0.0021 (7)−0.0041 (7)−0.0020 (7)
C70.0355 (9)0.0356 (8)0.0378 (9)0.0096 (7)0.0050 (7)0.0037 (7)
C80.0329 (9)0.0249 (7)0.0326 (8)0.0010 (6)0.0036 (6)0.0033 (6)
C90.0410 (10)0.0312 (8)0.0343 (9)0.0064 (7)0.0064 (7)0.0015 (6)
C100.0544 (11)0.0388 (9)0.0301 (9)0.0045 (8)0.0067 (7)−0.0003 (7)
C110.0481 (10)0.0382 (9)0.0323 (9)0.0022 (8)−0.0039 (7)0.0043 (7)
C120.0355 (9)0.0336 (8)0.0389 (9)0.0032 (7)−0.0014 (7)0.0055 (7)
N10.0357 (8)0.0328 (7)0.0322 (7)0.0068 (6)0.0009 (6)0.0022 (5)
N20.0416 (8)0.0377 (7)0.0286 (7)0.0147 (6)0.0023 (6)0.0012 (6)

Geometric parameters (Å, °)

C1—C21.385 (2)C7—H7B0.9700
C1—C61.386 (2)C8—N11.3502 (19)
C1—H10.9300C8—N21.3559 (19)
C2—C31.395 (2)C8—C91.409 (2)
C2—C71.500 (2)C9—C101.366 (2)
C3—C41.378 (2)C9—H90.9300
C3—H30.9300C10—C111.383 (2)
C4—C51.381 (2)C10—H100.9300
C4—H40.9300C11—C121.372 (2)
C5—C61.380 (2)C11—H110.9300
C5—H50.9300C12—N11.3353 (19)
C6—H60.9300C12—H120.9300
C7—N21.448 (2)N2—H20.8600
C7—H7A0.9700
C2—C1—C6121.05 (15)C2—C7—H7B109.5
C2—C1—H1119.5H7A—C7—H7B108.0
C6—C1—H1119.5N1—C8—N2115.92 (13)
C1—C2—C3118.30 (14)N1—C8—C9121.27 (14)
C1—C2—C7120.76 (14)N2—C8—C9122.81 (14)
C3—C2—C7120.94 (14)C10—C9—C8118.62 (15)
C4—C3—C2120.63 (15)C10—C9—H9120.7
C4—C3—H3119.7C8—C9—H9120.7
C2—C3—H3119.7C9—C10—C11120.44 (15)
C3—C4—C5120.50 (16)C9—C10—H10119.8
C3—C4—H4119.8C11—C10—H10119.8
C5—C4—H4119.8C12—C11—C10117.34 (15)
C6—C5—C4119.57 (15)C12—C11—H11121.3
C6—C5—H5120.2C10—C11—H11121.3
C4—C5—H5120.2N1—C12—C11124.42 (15)
C5—C6—C1119.96 (15)N1—C12—H12117.8
C5—C6—H6120.0C11—C12—H12117.8
C1—C6—H6120.0C12—N1—C8117.85 (13)
N2—C7—C2110.93 (13)C8—N2—C7122.91 (13)
N2—C7—H7A109.5C8—N2—H2118.5
C2—C7—H7A109.5C7—N2—H2118.5
N2—C7—H7B109.5

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and N1/C8–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.243.0518 (19)157
C12—H12···Cg1i0.932.723.536 (2)147
C4—H4···Cg2ii0.933.143.804 (2)130

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2510).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Benelli, C. & Gatteschi, D. (2002). Chem. Rev.102, 2369–2388. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed.34, 1555–1573.
  • Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Davies, R. P., Linton, D. J., Schooler, P., Snaith, R. & Wheatley, A. E. H. (2001). Chem. Eur. J.7, 3696–3704. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wan, C.-Q., Li, Q.-S., Song, H.-B., Xu, F.-B. & Zhang, Z.-Z. (2004). Acta Cryst. E60, m1973–m1975.
  • Wang, G. G. & Zhao, H. (2010). Acta Cryst. E66, o3077. [PMC free article] [PubMed]
  • Zhou, Y. & Richeson, D. S. (1995). Organometallics, 14, 3558–3561.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography