PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): i79.
Published online 2010 November 10. doi:  10.1107/S1600536810044806
PMCID: PMC3011449

Zn1.86Cd0.14(OH)VO4

Abstract

The title compound, dizinc cadmium hydroxide tetraoxido­vanadate, Zn1.86Cd0.14(OH)VO4, was prepared under low-temperature hydro­thermal conditions. It is isostructural with Zn2(OH)VO4 and Cu2(OH)VO4. In the crystal structure, chains of edge-sharing [ZnO6] octahedra are inter­connected by VO4 tetra­hedra (site symmetries of both V atoms and their coordination polyhedra are .m.) to form a three-dimensional [Zn(OH)VO4]2− framework with channels occupied by Zn and Zn/Cd cations adopting trigonal–bipyramidal and distorted octa­hedral coordinations, respectively. Zn1.86Cd0.14(OH)VO4 is topologically related to adamite-type phases, and descloizite- and tsumcorite-type structures.

Related literature

For isostructural compounds, see: Wang et al. (1998 [triangle]); Wu et al. (2003 [triangle]). For topologically related structures, see: Nandini & Vidyasagar (1998 [triangle]); Bachmann (1953 [triangle]); Qurashi & Barnes (1964 [triangle]). For structurally related compounds, see: Hawthorne & Faggiani (1979 [triangle]); Tillmanns & Gebert (1973 [triangle]). For bond-valence analysis, see: Brese & O’Keeffe (1991 [triangle]).

Experimental

Crystal data

  • Zn1.86Cd0.14(OH)VO4
  • M r = 535.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-00i79-efi1.jpg
  • a = 14.702 (3) Å
  • b = 6.0511 (12) Å
  • c = 8.9460 (18) Å
  • V = 795.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 14.00 mm−1
  • T = 293 K
  • 0.18 × 0.03 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (Otwinowski & Minor, 1997 [triangle]; Otwinowski et al., 2003 [triangle]) T min = 0.187, T max = 0.767
  • 5550 measured reflections
  • 1566 independent reflections
  • 1377 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.056
  • S = 1.17
  • 1566 reflections
  • 90 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.79 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and WinGX (Farrugia, 1999 [triangle]); molecular graphics: ATOMS (Dowty, 2000 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044806/br2149sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044806/br2149Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Austrian Science Foundation (FWF) (grant No. T300-N19), the Austrian Science Community (ÖFG) (grant No. MOEL 413) and the Ministry for Science and Technological Development of the Republic of Serbia (project Nos. 142030 and 19002).

supplementary crystallographic information

Comment

The phases in AMX–O–(H) system often form such family of compounds showing rich structural chemistry with anionic frameworks built from MO6 octahedra and XO4 tetrahedra and An+ ions as counter cations. There are many reports on divalent metal vanadates synthesized by high temperature solid state reactions. However, hydrothermal methods are proved to be effective for the synthesis of new vanadium compounds, including zinc vanadates (Wang et al., 1998 and references therein). To keep the products of hydrothermal synthesis under control is often difficult because of the high sensitivity to the exact reaction conditions. However, hydrothermal syntheses often result in well developed single crystals. Here we report on the new zinc cadmium hydrogen vanadate, (Zn1.86Cd0.14)(OH)VO4. In its crystal structure [Zn3O6]n octahedral chains are interconnected by VO4 tetrahedra to form a [Zn3(OH)VO4] framework. The voids are filled by Zn1 and Zn2/Cd2 cations with trigonal bipyramidal and distorted octahedral coordination, respectively. The two distinct V atoms adopt tetrahedral coordination. VO4 tetrahedra are distorted and both have site symmetry .m. V—O bond lengths are in the ranges of 1.684 (3) to 1.729 (2) Å for V1 and 1.651 (3) to 1.789 (3) Å for V2. The Zn—O bond lengths vary from 1.958 (3) to 2.427 (2) Å. (Zn1.86Cd0.14)(OH)VO4 is isostructural with Zn2(OH)VO4 (Wang et al., 1998) and Cu2(OH)VO4 (Wu et al., 2003) and topologically related to ASbV2O8 (A = K, Rb, Tl or Cs) (Nandini & Vidyasagar, 1998), adamite-type phases (Zn2(XO4)(OH), X5+ = P, As, V) and the minerals descloizite PbZn(VO4)(OH) (Bachmann, 1953; Qurashi & Barnes, 1964; Hawthorne & Faggiani, 1979) and tsumcorite PbZn2(AsO4)2(H2O) (Tillmanns & Gebert, 1973). In descloizite- and adamite-type structures the [ZnV2O9]-type chain is linked to four neighbours by sharing one column of tetrahedra with each neighbour. In the title compound the [Zn3V2O9] chain is linked to three neighbours by sharing two columns tetrahedra with one neighbour and one column with each of the other two neighbours (see Figs. 4 and 5 in Wang et al., 1998). If [ZnV2O9]-type chain shares two columns of tetrahedra with all neighbours, a two-dimensional layer instead of three-dimensional framework are formed. Such case is found in mineral tsumcorite, where [ZnAs2O9] chain is linked by sharing two of AsO4 tetrahedra with each of its two neighbours thus forming a layered structure eighbor and one column with each of the other two neighbours (see Fig. 6 in Wang et al., 1998). Bond-valence summations for all atoms, calculated using the parameters of Brese & O'Keeffe (1991), give 2.00 v.u. (valence units) for Zn1, 2.00 (1.22/0.78) v.u.for Zn2/Cd2, 2.07 v.u. for Zn3, 5.11 v.u. for V1, 4.90 for V2. For O atoms bond-valence summations are 1.94 v.u. (O1), 1.88 v.u. (O2), 1.99 v.u. (O3), 1.94 v.u. (O4), 1.96 v.u. (O5), 1.90 (O6), 1.32 v.u. (O7) and 1.38 v.u. (O8). Taking into account that the O7 and O8 atoms are the single donors of strong hydrogen bonds toward O4 (H2 forms a bifurcated hydrogen bond to two O4 atoms) and O2, respectively, the bond valences are well balanced.

Experimental

Single crystals of (Zn1.86Cd0.14)(OH)VO4 were obtained as reaction products from mixtures of Cd(OH)2 (Alfa Products), 2ZnO.2CO3.4H2O (Alfa Products), and V2O5 (Fluka Chemika 94710, 98%). The mixture was transferred into Teflon vessel and filled to approximately 70% of their inner volume with distilled water (pH of the mixture was 6). Finally it was enclosed into stainless steel autoclave. The mixture was heated under heating regime with three steps: the autoclaves were heated from 293.15 to 473.15 K (4 h), held at 473.15 K for 192 h, and finally cooled to room temperature within 175 h. At the end of the reaction the pH of the solvent was 6. The reaction products were filtered and washed thoroughly with distilled water. (Zn1.86Cd0.14)(OH)VO4 crystallized as transparent colourless needle-like crystals (yield ca 65%) and uninvestigated powder (yield ca 35%). All crystals are up to 0.2 mm in length.

Qualitative chemical analyses were performed using a Jeol JSM-6400LV scanning electron microscope (SEM) connected with a LINK energy-dispersive X-ray analysis (EDX) unit confirmed the presence of Zn, Cd and V.

Refinement

Studies of several single crystals of (Zn1.86Cd0.14)(OH)VO4 all revealed orthorhombic unit cell. A sample exhibiting sharp reflection spots was chosen for data collection. The crystal structure was refined starting from the atomic coordinates of Zn2(OH)VO4 (Wang et al., 1998) using standard procedures. The space-group symmetry Pnma was indicated by systematic absences and intensity statistics, and was confirmed by the structure refinement. Substitutional disorder was apparent and the occupancies of Zn22+ and Cd22+ were refined keeping the occupancy sum of Zn2+Cd2 fixed at 2.0 atoms per unit cell to satisfy the charge balance. The atomic coordinates and displacement parameters of Zn2 and Cd2 were kept equal. Occupancy of 72.7 and 27.3% for Zn2 and Cd2, respectively, were obtained. Anisotropic displacement parameters were allowed to vary for all non-H atoms. The H atoms were located from difference Fourier map and refined as riding atoms, with restraints on the O—H bond distance of 0.82 (2) Å and Uiso(H) values at 1.2Ueq(O).

Figures

Fig. 1.
Polyhedral view of the structure of Zn1.86Cd0.14(OH)VO4 along [010].
Fig. 2.
The local coordination of V, Zn and Cd atoms with atomic displacement ellipsoids at 50% probability.

Crystal data

Zn1.86Cd0.14(OH)VO4F(000) = 1010
Mr = 535.62Dx = 4.470 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1706 reflections
a = 14.702 (3) Åθ = 0.4–32.6°
b = 6.0511 (12) ŵ = 14.00 mm1
c = 8.9460 (18) ÅT = 293 K
V = 795.8 (3) Å3Prismatic, colourless
Z = 40.18 × 0.03 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer1566 independent reflections
Radiation source: fine-focus sealed tube1377 reflections with I > 2σ(I)
graphiteRint = 0.013
[var phi] and ω scansθmax = 32.6°, θmin = 2.8°
Absorption correction: multi-scan (Otwinowski & Minor, 1997; Otwinowski et al., 2003)h = −22→22
Tmin = 0.187, Tmax = 0.767k = −9→9
5550 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.056w = 1/[σ2(Fo2) + (0.0223P)2 + 1.9948P] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1566 reflectionsΔρmax = 0.79 e Å3
90 parametersΔρmin = −0.91 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00065 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.42606 (3)0.25000.41189 (5)0.01136 (10)
Zn20.20888 (3)0.25000.34164 (4)0.01276 (13)0.726 (5)
Cd20.20888 (3)0.25000.34164 (4)0.01276 (13)0.274 (5)
Zn30.36089 (2)−0.00355 (5)0.12498 (3)0.01342 (9)
V10.42663 (4)0.25000.81152 (7)0.00849 (12)
V20.16102 (4)0.2500−0.02047 (7)0.00833 (12)
O10.24703 (19)0.25000.1209 (3)0.0133 (5)
O20.4029 (2)0.25000.6273 (3)0.0158 (5)
O30.45895 (18)−0.25000.1564 (3)0.0139 (5)
O40.11984 (14)−0.0146 (3)0.3903 (2)0.0162 (4)
O50.56142 (19)0.25000.4353 (3)0.0172 (6)
O60.33279 (13)−0.0120 (3)0.37011 (19)0.0122 (3)
O70.43897 (17)0.25000.1853 (3)0.0101 (5)
H10.49310.25000.16290.012*
O80.22122 (18)0.25000.5759 (3)0.0114 (5)
H20.27520.25000.59890.014*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01098 (19)0.0146 (2)0.00853 (19)0.000−0.00083 (14)0.000
Zn20.0144 (2)0.0143 (2)0.00956 (19)0.0000.00227 (13)0.000
Cd20.0144 (2)0.0143 (2)0.00956 (19)0.0000.00227 (13)0.000
Zn30.01645 (15)0.00951 (14)0.01431 (16)−0.00237 (11)−0.00186 (10)−0.00122 (10)
V10.0081 (3)0.0099 (3)0.0074 (2)0.0000.00004 (19)0.000
V20.0081 (2)0.0086 (2)0.0084 (3)0.000−0.00083 (19)0.000
O10.0140 (12)0.0087 (11)0.0172 (13)0.000−0.0071 (10)0.000
O20.0162 (13)0.0224 (14)0.0088 (12)0.000−0.0011 (10)0.000
O30.0082 (11)0.0116 (11)0.0220 (13)0.000−0.0041 (10)0.000
O40.0202 (9)0.0152 (9)0.0131 (9)−0.0040 (8)−0.0016 (7)−0.0030 (7)
O50.0124 (12)0.0234 (14)0.0158 (13)0.000−0.0033 (10)0.000
O60.0146 (8)0.0116 (8)0.0102 (8)−0.0010 (7)0.0000 (6)−0.0006 (6)
O70.0085 (11)0.0098 (11)0.0118 (11)0.0000.0005 (9)0.000
O80.0092 (11)0.0088 (11)0.0160 (12)0.000−0.0008 (9)0.000

Geometric parameters (Å, °)

Zn1—O21.957 (3)Zn3—O4ii2.1214 (19)
Zn1—O52.001 (3)Zn3—O62.2321 (18)
Zn1—O72.036 (3)Zn3—O12.271 (2)
Zn1—O62.1291 (19)V1—O21.685 (3)
Zn1—O6i2.1291 (19)V1—O3iii1.706 (3)
Zn2—O12.053 (3)V1—O4iv1.7299 (19)
Zn2—O42.113 (2)V1—O4v1.730 (2)
Zn2—O4i2.113 (2)V2—O5vi1.650 (3)
Zn2—O6i2.428 (2)V2—O6ii1.7439 (19)
Zn2—O62.428 (2)V2—O6vii1.7439 (19)
Zn3—O8ii1.9683 (17)V2—O11.788 (3)
Zn3—O32.0931 (19)
O2—Zn1—O594.01 (12)O8ii—Zn3—O4ii84.27 (9)
O2—Zn1—O7175.32 (12)O3—Zn3—O4ii94.46 (10)
O5—Zn1—O790.67 (11)O8ii—Zn3—O695.08 (9)
O2—Zn1—O693.48 (8)O3—Zn3—O688.82 (10)
O5—Zn1—O6131.22 (5)O4ii—Zn3—O6176.58 (8)
O7—Zn1—O683.41 (7)O8ii—Zn3—O193.22 (8)
O2—Zn1—O6i93.48 (8)O3—Zn3—O1172.38 (10)
O5—Zn1—O6i131.22 (5)O4ii—Zn3—O192.72 (9)
O7—Zn1—O6i83.41 (7)O6—Zn3—O183.96 (9)
O6—Zn1—O6i96.24 (10)O2—V1—O3iii111.65 (15)
O1—Zn2—O4111.55 (7)O2—V1—O4iv108.46 (8)
O1—Zn2—O4i111.55 (7)O3iii—V1—O4iv108.71 (9)
O4—Zn2—O4i98.51 (11)O2—V1—O4v108.46 (8)
O1—Zn2—O6i84.03 (7)O3iii—V1—O4v108.71 (9)
O4—Zn2—O6i159.66 (7)O4iv—V1—O4v110.86 (14)
O4i—Zn2—O6i87.05 (7)O5vi—V2—O6ii107.78 (8)
O1—Zn2—O684.03 (7)O5vi—V2—O6vii107.78 (8)
O4—Zn2—O687.05 (7)O6ii—V2—O6vii111.37 (12)
O4i—Zn2—O6159.66 (7)O5vi—V2—O1107.51 (14)
O6i—Zn2—O681.51 (9)O6ii—V2—O1111.10 (8)
O8ii—Zn3—O384.98 (8)O6vii—V2—O1111.10 (8)

Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1/2, −y, z−1/2; (iii) −x+1, −y, −z+1; (iv) −x+1/2, y+1/2, z+1/2; (v) −x+1/2, −y, z+1/2; (vi) x−1/2, y, −z+1/2; (vii) −x+1/2, y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H1···O4viii0.89 (2)2.45 (2)3.176 (3)139 (1)
O7—H1···O4ix0.89 (2)2.45 (2)3.176 (3)139 (1)
O8—H2···O20.88 (2)1.84 (2)2.708 (4)175 (9)

Symmetry codes: (viii) x+1/2, −y+1/2, −z+1/2; (ix) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2149).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bachmann, H. G. (1953). Acta Cryst.6, 102.
  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Dowty, E. (2000). ATOMS for Windows Shape Software, Kingsport, Tennessee, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hawthorne, F. C. & Faggiani, R. (1979). Acta Cryst. B35, 717–720.
  • Nandini, R. & Vidyasagar, K. (1998). J. Chem. Soc. Dalton Trans. pp. 3013–3019.
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Qurashi, M. M. & Barnes, W. H. (1964). Can. Mineral.8, 23–29.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tillmanns, E. & Gebert, W. (1973). Acta Cryst. B29, 2789–2794.
  • Wang, X., Liu, L. & Jacobson, A. J. (1998). Z. Anorg. Allg. Chem 624, 1977–1981.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Wu, C. D., Lu, C. Z., Zhuang, H. H. & Huang, J. S. (2003). Eur. J. Inorg. Chem. pp. 2867–2871.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography