PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1647.
Published online 2010 November 24. doi:  10.1107/S1600536810044211
PMCID: PMC3011448

Bromidotricarbon­yl[4-chloro-N-(2-pyridyl­methyl­idene)aniline-κ2 N,N′]rhenium(I)

Abstract

In the title compound, [ReBr(C12H9ClN2)(CO)3], the ReI atom has a distorted octa­hedral configuration with the three carbonyl ligands showing a facial arrangement. The main distortion of the octa­hedron is due to a small bite angle of the chelating bidentate diimine ligand [N—Re—N = 75.3 (3)°].

Related literature

For the synthesis of (4-chloro­phen­yl)pyridin-2-yl­methyl­ene­amine, see: Dehghanpour & Mahmoudi (2007 [triangle]). For related structures, see: Dehghanpour et al. (2009 [triangle], 2010 [triangle]); Dehghanpour & Mahmoudi (2010 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-m1647-scheme1.jpg

Experimental

Crystal data

  • [ReBr(C12H9ClN2)(CO)3]
  • M r = 566.80
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1647-efi1.jpg
  • a = 8.6559 (8) Å
  • b = 8.9037 (8) Å
  • c = 10.9442 (9) Å
  • α = 75.691 (5)°
  • β = 83.001 (5)°
  • γ = 81.808 (5)°
  • V = 805.65 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 10.20 mm−1
  • T = 150 K
  • 0.10 × 0.09 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.425, T max = 0.734
  • 8206 measured reflections
  • 3651 independent reflections
  • 2722 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.126
  • S = 1.03
  • 3651 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 3.45 e Å−3
  • Δρmin = −2.54 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044211/gk2300sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044211/gk2300Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MK would like to acknowledge the Islamic Azad University Research Council for partial support of this work.

supplementary crystallographic information

Comment

The title complex, (I), (Fig. 1) was prepared by the reaction of Re(CO)5Br with the bidentate ligand (4-chlorophenyl)pyridin-2-ylmethyleneamine.

The Re center in (I) has a distorted octahedral geometry, with the three carbonyls arranged in a facial configuration as expected for d6 ReCO3+ compounds. The diimine ligand binds to the metal in a bidentate fashion through the nitrogen atoms. The last site in the coordination sphere is occupied by bromide. The C–O bonds of the carbonyls are typical for ReCO3+ complexes with the bond lengths in the range of 1.058 (12)–1.135 (11) Å (Dehghanpour et al., 2009; Dehghanpour et al., 2010). The Re–C bonds have standard lengths, with ranges of 1.919 (11)–1.969 (13) Å, and the Re–X bond is as expected for these complexes. The metal–nitrogen bonds of the diimine have bond lengths of 2.170 (8) and 2.182 (8) Å. The steric requirements of the bidentate ligands cause distortion of the octahedral coordination which is most clearly seen for the ligand bite angle (N1–Re1–N2, 75.3 (3)°). The coordinated bromide is slightly titled toward the diimine ligand, causing a narrowing of the N–Re–Br angles (e.g. 84.6 (2)° for N1–Re1–Br1, 82.3 (2)° for N2–Re1–Br1).

Experimental

A mixture of [Re(CO)5Br] (406 mg, 1 mmol) and (4-chlorophenyl)pyridin-2-ylmethyleneamine (216 mg, 1 mmol) in dry, degassed toluene (30 ml) was heated to reflux for 4 h under N2 to give a bright red solution. The solvent was removed under vacuum and the crude material recrystallized from CH2Cl2/hexane to give [Re(CO)3Br(C12H9ClN2)] as pure red crystals. Yield: 91%. Calc. for C15H9ClBrN2O3Re: C 31.79, H 1.59, N 4.94%; found: C 31.89, H 1.50, N 4.99%.

Refinement

All H atoms were positioned geometrically and their parameters refined in a riding model approximatiom with Uiso(H)=1.2 Ueq(C) . The highest density peak in the final differnce Fourier map is 3.45eÅ-3 and is located 1.86Å from C2 while the deepest hole is -2.45eÅ-3 and is located 0.88Å from Re1. These effects may be caused by the fairly low redundancy of the reflections used for the absorption correction. There is also a possibility that there is some whole molecule disorder present but this could not be identified as it was in a related crystal structure (Dehghanpour & Mahmoudi, 2010).

Figures

Fig. 1.
A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius.

Crystal data

[ReBr(C12H9ClN2)(CO)3]Z = 2
Mr = 566.80F(000) = 528
Triclinic, P1Dx = 2.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6559 (8) ÅCell parameters from 8206 reflections
b = 8.9037 (8) Åθ = 2.7–27.6°
c = 10.9442 (9) ŵ = 10.20 mm1
α = 75.691 (5)°T = 150 K
β = 83.001 (5)°Plate, orange
γ = 81.808 (5)°0.10 × 0.09 × 0.03 mm
V = 805.65 (12) Å3

Data collection

Nonius KappaCCD diffractometer3651 independent reflections
Radiation source: fine-focus sealed tube2722 reflections with I > 2σ(I)
graphiteRint = 0.077
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 2.7°
[var phi] scans and ω scans with κ offsetsh = −11→11
Absorption correction: multi-scan (SORTAV; Blessing, 1995)k = −11→11
Tmin = 0.425, Tmax = 0.734l = −12→14
8206 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0437P)2 + 4.4525P] where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 3.45 e Å3
0 restraintsΔρmin = −2.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Re10.72202 (5)0.92191 (4)0.74692 (4)0.03208 (15)
Br10.79387 (12)0.78337 (11)0.97638 (9)0.0352 (2)
Cl11.3685 (3)0.3425 (4)0.5681 (3)0.0536 (7)
O10.6432 (7)1.0842 (8)0.4811 (7)0.0348 (16)
O20.6196 (9)1.2317 (8)0.8222 (7)0.0454 (19)
O31.0512 (9)1.0234 (8)0.6675 (7)0.0440 (18)
N10.5004 (9)0.8272 (9)0.8084 (7)0.0324 (19)
N20.7661 (10)0.6836 (9)0.7214 (7)0.0299 (18)
C10.6666 (12)1.0207 (11)0.5736 (11)0.034 (2)
C20.6572 (11)1.1172 (12)0.7930 (9)0.034 (2)
C30.9309 (13)0.9829 (11)0.6976 (9)0.034 (2)
C40.3679 (12)0.8976 (13)0.8541 (9)0.038 (2)
H4A0.36541.00360.85740.045*
C50.2312 (12)0.8245 (12)0.8979 (9)0.035 (2)
H5A0.14010.87790.93270.042*
C60.2341 (12)0.6726 (12)0.8883 (9)0.035 (2)
H6A0.14330.61990.91410.042*
C70.3699 (12)0.5983 (12)0.8409 (10)0.039 (2)
H7A0.37300.49310.83540.046*
C80.5019 (12)0.6742 (10)0.8011 (9)0.032 (2)
C90.6501 (11)0.6024 (11)0.7544 (9)0.034 (2)
H9A0.66160.49680.74810.041*
C100.9115 (12)0.6014 (10)0.6875 (9)0.031 (2)
C111.0098 (12)0.6759 (11)0.5850 (9)0.034 (2)
H11A0.97970.77990.54050.041*
C121.1509 (13)0.5960 (12)0.5499 (10)0.041 (3)
H12A1.21830.64540.48110.050*
C131.1937 (12)0.4441 (12)0.6150 (9)0.038 (2)
C141.1010 (13)0.3726 (13)0.7181 (10)0.041 (3)
H14A1.13410.27010.76410.049*
C150.9604 (12)0.4498 (11)0.7544 (9)0.035 (2)
H15A0.89610.40000.82520.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re10.0359 (3)0.0276 (2)0.0315 (2)−0.00496 (16)−0.00217 (17)−0.00434 (16)
Br10.0400 (6)0.0342 (5)0.0299 (5)−0.0039 (4)−0.0040 (4)−0.0047 (4)
Cl10.0439 (16)0.0624 (18)0.0549 (17)0.0102 (14)−0.0067 (14)−0.0230 (15)
O10.022 (4)0.037 (4)0.047 (4)−0.007 (3)−0.003 (3)−0.010 (4)
O20.056 (5)0.031 (4)0.050 (5)−0.006 (4)0.000 (4)−0.014 (3)
O30.038 (4)0.046 (4)0.045 (4)−0.010 (4)−0.004 (4)−0.002 (3)
N10.031 (4)0.027 (4)0.035 (4)0.003 (3)0.001 (4)−0.005 (3)
N20.041 (5)0.026 (4)0.023 (4)−0.003 (4)−0.005 (4)−0.006 (3)
C10.028 (5)0.026 (5)0.053 (7)−0.008 (4)0.011 (5)−0.022 (5)
C20.022 (5)0.039 (6)0.038 (6)0.000 (4)−0.002 (4)−0.007 (5)
C30.042 (6)0.030 (5)0.027 (5)−0.001 (5)0.000 (5)−0.007 (4)
C40.030 (6)0.046 (6)0.038 (6)0.000 (5)−0.007 (5)−0.014 (5)
C50.032 (6)0.039 (6)0.034 (5)0.004 (4)−0.008 (4)−0.010 (4)
C60.032 (6)0.044 (6)0.028 (5)−0.006 (5)−0.003 (4)−0.005 (4)
C70.037 (6)0.035 (5)0.045 (6)−0.011 (5)−0.014 (5)−0.004 (5)
C80.043 (6)0.022 (4)0.033 (5)−0.004 (4)0.000 (5)−0.008 (4)
C90.030 (5)0.029 (5)0.042 (6)0.004 (4)−0.009 (4)−0.007 (4)
C100.041 (6)0.023 (5)0.035 (5)−0.006 (4)−0.004 (5)−0.016 (4)
C110.044 (6)0.026 (5)0.032 (5)−0.003 (4)−0.003 (5)−0.007 (4)
C120.046 (7)0.038 (6)0.039 (6)−0.003 (5)−0.001 (5)−0.009 (5)
C130.039 (6)0.045 (6)0.033 (5)0.004 (5)−0.010 (5)−0.017 (5)
C140.043 (6)0.039 (6)0.044 (6)0.000 (5)−0.009 (5)−0.014 (5)
C150.043 (6)0.031 (5)0.034 (5)−0.007 (5)−0.002 (5)−0.008 (4)

Geometric parameters (Å, °)

Re1—C21.919 (11)C5—H5A0.9500
Re1—C31.937 (10)C6—C71.374 (14)
Re1—C11.969 (13)C6—H6A0.9500
Re1—N12.170 (8)C7—C81.380 (13)
Re1—N22.182 (8)C7—H7A0.9500
Re1—Br12.6165 (11)C8—C91.443 (13)
Cl1—C131.738 (11)C9—H9A0.9500
O1—C11.058 (12)C10—C151.400 (13)
O2—C21.135 (12)C10—C111.409 (13)
O3—C31.135 (11)C11—C121.385 (14)
N1—C41.330 (12)C11—H11A0.9500
N1—C81.382 (11)C12—C131.386 (14)
N2—C91.285 (12)C12—H12A0.9500
N2—C101.419 (12)C13—C141.375 (14)
C4—C51.408 (13)C14—C151.375 (14)
C4—H4A0.9500C14—H14A0.9500
C5—C61.379 (14)C15—H15A0.9500
C2—Re1—C389.3 (4)C7—C6—C5119.2 (9)
C2—Re1—C189.3 (4)C7—C6—H6A120.4
C3—Re1—C189.0 (4)C5—C6—H6A120.4
C2—Re1—N196.0 (3)C6—C7—C8121.0 (9)
C3—Re1—N1173.6 (3)C6—C7—H7A119.5
C1—Re1—N194.5 (3)C8—C7—H7A119.5
C2—Re1—N2170.0 (3)C7—C8—N1120.6 (9)
C3—Re1—N299.1 (4)C7—C8—C9124.2 (9)
C1—Re1—N296.2 (3)N1—C8—C9115.2 (8)
N1—Re1—N275.3 (3)N2—C9—C8119.0 (9)
C2—Re1—Br192.1 (3)N2—C9—H9A120.5
C3—Re1—Br191.8 (3)C8—C9—H9A120.5
C1—Re1—Br1178.4 (3)C15—C10—C11119.4 (9)
N1—Re1—Br184.6 (2)C15—C10—N2121.8 (8)
N2—Re1—Br182.3 (2)C11—C10—N2118.8 (8)
C4—N1—C8117.7 (8)C12—C11—C10119.3 (9)
C4—N1—Re1127.6 (7)C12—C11—H11A120.3
C8—N1—Re1114.6 (6)C10—C11—H11A120.3
C9—N2—C10115.7 (8)C11—C12—C13120.0 (9)
C9—N2—Re1115.9 (7)C11—C12—H12A120.0
C10—N2—Re1127.9 (6)C13—C12—H12A120.0
O1—C1—Re1173.7 (9)C14—C13—C12121.0 (10)
O2—C2—Re1178.9 (9)C14—C13—Cl1119.2 (8)
O3—C3—Re1177.8 (9)C12—C13—Cl1119.9 (8)
N1—C4—C5123.9 (10)C15—C14—C13119.9 (10)
N1—C4—H4A118.1C15—C14—H14A120.0
C5—C4—H4A118.1C13—C14—H14A120.0
C6—C5—C4117.6 (10)C14—C15—C10120.4 (9)
C6—C5—H5A121.2C14—C15—H15A119.8
C4—C5—H5A121.2C10—C15—H15A119.8

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2300).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Inorg. Chem. Commun.12, 231–233.
  • Dehghanpour, S., Lipkowski, J., Mahmoudi, A. & Khalaj, M. (2010). J. Coord. Chem.63, 1473–1479.
  • Dehghanpour, M. & Mahmoudi, A. (2007). Main Group Chem.6, 121–130.
  • Dehghanpour, S. & Mahmoudi, A. (2010). Acta Cryst. E66, m1335. [PMC free article] [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography