PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3052.
Published online 2010 November 6. doi:  10.1107/S1600536810043461
PMCID: PMC3011447

1-[(E)-(2-Methyl-3-nitro­phen­yl)imino­meth­yl]-2-naphthol

Abstract

The title Schiff base compound, C18H14N2O3, has an inter­mediate state between NH and OH tautomers. The mol­ecular structure is stabilized by an O—H(...)N hydrogen bond. The dihedral angle between the naphthalene ring system and the benzene ring is 37.44 (5)°.

Related literature

For the biological properties of Schiff bases, see: Lozier et al. (1975 [triangle]). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009 [triangle]); Yeap et al. (2009 [triangle]). For Schiff base tautomerism, see: Hökelek et al. (2000 [triangle]); Karabıyık et al. (2007 [triangle]); Odabaşoğlu et al. (2005 [triangle]); Kılıç et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3052-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O3
  • M r = 306.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3052-efi1.jpg
  • a = 12.5520 (9) Å
  • b = 7.4731 (4) Å
  • c = 15.8610 (13) Å
  • β = 90.806 (6)°
  • V = 1487.65 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.7 × 0.47 × 0.12 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.989, T max = 0.997
  • 9684 measured reflections
  • 3088 independent reflections
  • 1969 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.153
  • S = 0.94
  • 3088 reflections
  • 213 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043461/bt5391sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043461/bt5391Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Odabaşoǧlu et al., 2005) tautomeric forms. Our investigations shows that in the title compound is described as an intermediate state between NH and OH tautomers. An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig.1. The C2—O1 [1.331 (2) Å] and C11—N1 [1.299 (2) Å] bond lengths are intermediate between the single and double C—O (1.362 and 1.222 Å, respectively) and C—N bond lengths (1.339 and 1.279 Å, respectively) (Allen et al., 1987). The molecular structure is stabilized by an intramolecular O—H···N hydrogen bond. It is a well known fact that H atoms participating in intramolecular hydrogen bonds in Schiff bases are rather mobile. The molecule can be regarded as having an intermediate state between its canonical OH and NH forms, and therefore the O1—H1 bond [1.10 (3) Å] remains somewhat longer than its expected value (Karabıyık et al., 2007). Similar results were observed for 2-[(4-Methoxyphenyl)iminomethyl]-4- nitrophenol (Kılıç et al., 2009). The molecule of the title compound is not planar, with a dihedral angle of 37.44 (5)° between naphthalene and benzene rings.

Experimental

The title compound was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (172 mg, 0,0986 mmol) in ethanol (30 ml) and a solution containing 2-methyl-3-nitroaniline (15 mg, 0,0986 mmol) in ethanol (30 ml. The reaction mixture was stirred for 1 h under reflux. Single crystals of the title compound for x-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 68%; m.p. 428–432 K).

Refinement

H atoms bonded to C were placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). The H atom bonded to O was freely refined.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H14N2O3F(000) = 640
Mr = 306.31Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8237 reflections
a = 12.5520 (9) Åθ = 1.3–27.3°
b = 7.4731 (4) ŵ = 0.10 mm1
c = 15.8610 (13) ÅT = 296 K
β = 90.806 (6)°PRISM., yellow
V = 1487.65 (18) Å30.7 × 0.47 × 0.12 mm
Z = 4

Data collection

Stoe IPDS II diffractometer3088 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
graphiteRint = 0.061
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.6°
ω scansh = −15→15
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −9→9
Tmin = 0.989, Tmax = 0.997l = −19→17
9684 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3088 reflectionsΔρmax = 0.24 e Å3
213 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.41741 (13)0.0570 (2)0.21696 (11)0.0439 (4)
C20.35899 (13)0.0014 (2)0.28723 (11)0.0489 (4)
C30.24646 (15)−0.0112 (3)0.28256 (13)0.0605 (5)
H30.2085−0.04980.32910.073*
C40.19459 (14)0.0329 (3)0.21045 (13)0.0627 (5)
H40.12060.02580.20860.075*
C50.24883 (13)0.0898 (3)0.13724 (12)0.0510 (4)
C60.19243 (15)0.1360 (3)0.06252 (14)0.0618 (5)
H60.11840.13090.06160.074*
C70.24441 (16)0.1873 (3)−0.00749 (14)0.0648 (5)
H70.20620.2181−0.05600.078*
C80.35511 (16)0.1941 (3)−0.00694 (13)0.0606 (5)
H80.39070.2270−0.05560.073*
C90.41227 (14)0.1526 (3)0.06482 (11)0.0515 (5)
H90.48620.15940.06420.062*
C100.36138 (12)0.1001 (2)0.13924 (11)0.0441 (4)
C110.53047 (13)0.0720 (2)0.22409 (12)0.0471 (4)
H110.56860.10780.17720.057*
C120.69421 (13)0.0479 (2)0.29892 (11)0.0487 (4)
C130.74005 (13)0.1057 (2)0.37579 (11)0.0461 (4)
C140.85070 (14)0.1110 (3)0.37726 (12)0.0557 (5)
C150.91392 (15)0.0627 (4)0.31127 (15)0.0757 (7)
H150.98770.07020.31590.091*
C160.86568 (16)0.0027 (4)0.23779 (15)0.0813 (7)
H160.9068−0.03230.19240.098*
C170.75641 (15)−0.0048 (3)0.23229 (13)0.0655 (6)
H170.7239−0.04610.18300.079*
C180.67164 (14)0.1657 (3)0.44710 (12)0.0562 (5)
H18A0.71610.20050.49400.084*
H18B0.62600.06920.46370.084*
H18C0.62900.26570.42920.084*
N10.58208 (11)0.0375 (2)0.29377 (9)0.0481 (4)
N20.90826 (13)0.1746 (3)0.45348 (12)0.0695 (5)
O10.40602 (11)−0.0411 (2)0.36024 (8)0.0609 (4)
O20.88124 (15)0.1224 (3)0.52187 (11)0.1036 (7)
O30.98286 (12)0.2763 (3)0.44235 (12)0.0997 (6)
H10.489 (3)−0.023 (4)0.343 (2)0.128 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0467 (8)0.0410 (9)0.0437 (9)0.0020 (7)−0.0038 (7)−0.0022 (8)
C20.0532 (9)0.0499 (10)0.0435 (10)0.0026 (7)0.0003 (7)−0.0048 (8)
C30.0548 (10)0.0759 (14)0.0510 (11)−0.0020 (9)0.0092 (8)−0.0036 (10)
C40.0419 (9)0.0810 (14)0.0652 (13)0.0029 (9)0.0014 (9)−0.0089 (11)
C50.0472 (9)0.0541 (11)0.0515 (11)0.0041 (7)−0.0059 (8)−0.0083 (9)
C60.0506 (10)0.0709 (13)0.0634 (13)0.0104 (9)−0.0158 (9)−0.0083 (11)
C70.0716 (12)0.0672 (13)0.0552 (12)0.0102 (10)−0.0218 (10)−0.0007 (10)
C80.0738 (12)0.0603 (12)0.0474 (11)−0.0026 (9)−0.0073 (9)0.0052 (9)
C90.0531 (9)0.0517 (10)0.0496 (11)−0.0050 (8)−0.0061 (8)0.0033 (9)
C100.0478 (9)0.0391 (9)0.0453 (9)0.0011 (7)−0.0044 (7)−0.0029 (7)
C110.0493 (9)0.0461 (10)0.0459 (10)−0.0011 (7)−0.0026 (7)0.0003 (8)
C120.0470 (9)0.0509 (10)0.0480 (10)0.0015 (7)−0.0048 (7)−0.0003 (8)
C130.0473 (8)0.0476 (10)0.0434 (9)−0.0002 (7)−0.0050 (7)0.0031 (8)
C140.0487 (9)0.0655 (12)0.0526 (11)0.0008 (8)−0.0113 (8)−0.0018 (9)
C150.0443 (10)0.1099 (19)0.0727 (15)0.0034 (10)−0.0026 (9)−0.0122 (14)
C160.0546 (11)0.122 (2)0.0674 (14)0.0087 (12)0.0058 (10)−0.0223 (15)
C170.0570 (10)0.0860 (15)0.0533 (12)0.0069 (10)−0.0049 (9)−0.0168 (11)
C180.0567 (10)0.0636 (12)0.0481 (10)−0.0007 (8)−0.0018 (8)0.0019 (9)
N10.0471 (8)0.0497 (8)0.0473 (8)0.0010 (6)−0.0083 (6)−0.0003 (7)
N20.0517 (9)0.0915 (14)0.0646 (12)0.0002 (9)−0.0173 (8)−0.0044 (11)
O10.0635 (8)0.0769 (10)0.0422 (7)0.0031 (7)−0.0009 (6)0.0051 (7)
O20.1009 (13)0.154 (2)0.0552 (10)−0.0192 (12)−0.0220 (9)0.0058 (11)
O30.0650 (9)0.1341 (17)0.0991 (13)−0.0299 (10)−0.0239 (9)−0.0091 (12)

Geometric parameters (Å, °)

C1—C21.406 (2)C11—H110.9300
C1—C111.426 (2)C12—C171.380 (3)
C1—C101.447 (2)C12—C131.409 (2)
C2—O11.331 (2)C12—N11.411 (2)
C2—C31.417 (3)C13—C141.389 (2)
C3—C41.349 (3)C13—C181.498 (3)
C3—H30.9300C14—C151.371 (3)
C4—C51.420 (3)C14—N21.478 (3)
C4—H40.9300C15—C161.381 (3)
C5—C61.415 (3)C15—H150.9300
C5—C101.415 (2)C16—C171.374 (3)
C6—C71.351 (3)C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C81.390 (3)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.372 (3)C18—H18C0.9600
C8—H80.9300N2—O21.206 (2)
C9—C101.406 (2)N2—O31.221 (2)
C9—H90.9300O1—H11.10 (3)
C11—N11.299 (2)
C2—C1—C11119.33 (16)C1—C11—H11118.8
C2—C1—C10119.26 (15)C17—C12—C13121.45 (16)
C11—C1—C10121.41 (15)C17—C12—N1120.96 (16)
O1—C2—C1122.05 (15)C13—C12—N1117.52 (15)
O1—C2—C3117.35 (16)C14—C13—C12114.78 (16)
C1—C2—C3120.60 (16)C14—C13—C18124.22 (16)
C4—C3—C2119.81 (18)C12—C13—C18120.91 (15)
C4—C3—H3120.1C15—C14—C13124.69 (17)
C2—C3—H3120.1C15—C14—N2115.32 (16)
C3—C4—C5122.38 (17)C13—C14—N2119.98 (17)
C3—C4—H4118.8C14—C15—C16118.58 (18)
C5—C4—H4118.8C14—C15—H15120.7
C6—C5—C10119.57 (18)C16—C15—H15120.7
C6—C5—C4121.22 (16)C17—C16—C15119.5 (2)
C10—C5—C4119.21 (16)C17—C16—H16120.3
C7—C6—C5121.06 (17)C15—C16—H16120.3
C7—C6—H6119.5C16—C17—C12120.96 (19)
C5—C6—H6119.5C16—C17—H17119.5
C6—C7—C8119.95 (17)C12—C17—H17119.5
C6—C7—H7120.0C13—C18—H18A109.5
C8—C7—H7120.0C13—C18—H18B109.5
C9—C8—C7120.52 (19)H18A—C18—H18B109.5
C9—C8—H8119.7C13—C18—H18C109.5
C7—C8—H8119.7H18A—C18—H18C109.5
C8—C9—C10121.39 (17)H18B—C18—H18C109.5
C8—C9—H9119.3C11—N1—C12121.57 (15)
C10—C9—H9119.3C11—N1—H197.0 (12)
C9—C10—C5117.49 (16)C12—N1—H1141.0 (12)
C9—C10—C1123.80 (15)O2—N2—O3123.89 (19)
C5—C10—C1118.71 (16)O2—N2—C14119.41 (19)
N1—C11—C1122.38 (17)O3—N2—C14116.68 (19)
N1—C11—H11118.8C2—O1—H199.5 (17)
C11—C1—C2—O1−1.2 (3)C2—C1—C11—N1−0.6 (3)
C10—C1—C2—O1179.59 (16)C10—C1—C11—N1178.56 (17)
C11—C1—C2—C3178.70 (17)C17—C12—C13—C142.2 (3)
C10—C1—C2—C3−0.5 (3)N1—C12—C13—C14179.22 (16)
O1—C2—C3—C4178.99 (19)C17—C12—C13—C18178.92 (19)
C1—C2—C3—C4−0.9 (3)N1—C12—C13—C18−4.1 (3)
C2—C3—C4—C51.0 (3)C12—C13—C14—C15−0.9 (3)
C3—C4—C5—C6−179.8 (2)C18—C13—C14—C15−177.5 (2)
C3—C4—C5—C100.4 (3)C12—C13—C14—N2178.16 (18)
C10—C5—C6—C71.0 (3)C18—C13—C14—N21.6 (3)
C4—C5—C6—C7−178.9 (2)C13—C14—C15—C16−0.6 (4)
C5—C6—C7—C80.5 (3)N2—C14—C15—C16−179.7 (2)
C6—C7—C8—C9−1.4 (3)C14—C15—C16—C170.8 (4)
C7—C8—C9—C100.8 (3)C15—C16—C17—C120.5 (4)
C8—C9—C10—C50.6 (3)C13—C12—C17—C16−2.1 (3)
C8—C9—C10—C1−179.21 (17)N1—C12—C17—C16−179.0 (2)
C6—C5—C10—C9−1.5 (3)C1—C11—N1—C12178.07 (15)
C4—C5—C10—C9178.39 (18)C17—C12—N1—C11−37.0 (3)
C6—C5—C10—C1178.35 (17)C13—C12—N1—C11145.97 (18)
C4—C5—C10—C1−1.8 (3)C15—C14—N2—O2−135.8 (2)
C2—C1—C10—C9−178.35 (16)C13—C14—N2—O245.0 (3)
C11—C1—C10—C92.5 (3)C15—C14—N2—O342.8 (3)
C2—C1—C10—C51.8 (2)C13—C14—N2—O3−136.3 (2)
C11—C1—C10—C5−177.34 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N11.10 (3)1.48 (3)2.5310 (19)159 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5391).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct.523, 61–69.
  • Karabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215–o218. [PubMed]
  • Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404. [PMC free article] [PubMed]
  • Kılıç, I., Ağar, E., Erşahin, F. & Işık, Ş. (2009). Acta Cryst. E65, o737. [PMC free article] [PubMed]
  • Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J.15, 955–962. [PubMed]
  • Odabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425–o426.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography